Что такое машина тьюринга. Программа для машины тьюринга Алгоритмическая модель тьюринга

Который, позаимствовав идею у Эмиля Поста, придумал её, как считается, в 1936 году. Несмотря на довольно сложное формальное определение, идея в принципе проста. Чтобы понять её, давайте прогуляемся по страницам Википедии.

Первым делом мы попадаем на страничку, которая, собственно, так и называется: «машина Тьюринга ».

Машина Тьюринга

Машина Тьюринга (МТ) - математическая абстракция, представляющая вычислительную машину общего вида. Была предложена Аланом Тьюрингом в году для формализации понятия алгоритма .

Машина Тьюринга является расширением модели конечного автомата и, согласно тезису Чёрча - Тьюринга , способна имитировать (при наличии соответствующей программы) любую машину, действие которой заключается в переходе от одного дискретного состояния к другому.

В состав Машины Тьюринга входит бесконечная в обе стороны лента , разделённая на ячейки, и управляющее устройство с конечным числом состояний.

Управляющее устройство может перемещаться влево и вправо по ленте, читать и записывать в ячейки символы некоторого конечного алфавита. Выделяется особый пустой символ, заполняющий все клетки ленты, кроме тех из них (конечного числа), на которых записаны входные данные.

В управляющем устройстве содержится таблица переходов , которая представляет алгоритм, реализуемый данной Машиной Тьюринга. Каждое правило из таблицы предписывает машине, в зависимости от текущего состояния и наблюдаемого в текущей клетке символа, записать в эту клетку новый символ, перейти в новое состояние и переместиться на одну клетку влево или вправо. Некоторые состояния Машины Тьюринга могут быть помечены как терминальные , и переход в любое из них означает конец работы, остановку алгоритма.

Машина Тьюринга называется детерминированной , если каждой комбинации состояния и ленточного символа в таблице соответствует не более одного правила, и недетерминированной в противном случае.

Итак, машина Тьюринга - математическая абстракция , умозрительное построение человеческого разума: в природе её нет. Или есть? Сразу приходит на ум, как работает живая клетка . Хотя бы два примера.

1. Для производства белков в клетке с помощью сложно устроенного фермента - РНК-полимеразы - считывается информация с ДНК, своего рода информационной ленты машины Тьюринга. Здесь, правда, не происходит перезапись ячеек самой ленты, но в остальном процесс весьма похож: РНК-полимераза садится на ДНК и двигается по ней в одном направлении, при этом она синтезирует нить РНК - нуклеиновой кислоты, сходной с ДНК. Готовая РНК, отсоединяясь от фермента, несёт информацию к клеточным органеллам, в которых производятся белки.

2. Ещё более похож на машину Тьюринга процесс исправления ошибок в ДНК - её репарация. Здесь ДНК-полимераза вместе с другими белками двигается по ленте ДНК и считывает обе её половинки (геномная ДНК, как известно, представляет собой две переплетенных нити, несущих одну и ту же информацию). Если информация в половинках не совпадает, ДНК-полимераза принимает одну из них за образец и «правит» другую.

Такая аналогия не нова, и в Википедии она тоже описана в статье «Молекулярный компьютер »:

Молекулярный компьютер

Биомолекулярные вычисления или молекулярные компьютеры или даже ДНК - или РНК -вычисления - все эти термины появились на стыке таких различных наук как молекулярная генетика и вычислительная техника.

Биомолекулярные вычисления - это собирательное название для различных техник, так или иначе связанных с ДНК или РНК. При ДНК-вычислениях данные представляются не в форме нулей и единиц, а в виде молекулярной структуры, построенной на основе спирали ДНК. Роль программного обеспечения для чтения, копирования и управления данными выполняют особые ферменты .

Основой всей системы хранения биологической информации, а стало быть, и ДНК-компьютеров, является способность атомов водорода , входящих в азотистые соединения (аденин , тимин , цитозин и гуанин), при определенных условиях притягиваться друг к другу, образуя невалентно связанные пары. С другой стороны, эти вещества могут валентно связываться с сочетаниями молекулы сахара (дезоксирибозы) и фосфата , образуя так называемые нуклеотиды . Нуклеотиды, в свою очередь, легко образуют полимеры длиной в десятки миллионов оснований. В этих супермолекулах фосфат и дезоксирибоза играют роль поддерживающей структуры (они чередуются в цепочке), а азотистые соединения кодируют информацию.

Молекула получается направленной: начинается с фосфатной группы и заканчивается дезоксирибозой. Длинные цепочки ДНК называют нитями, короткие - олигонуклеотидами. Каждой молекуле ДНК соответствует еще одна ДНК - так называемое дополнение Ватсона - Крика . Она имеет противоположную направленность, нежели оригинальная молекула. В результате притяжения аденина к тимину и цитозина к гуанину получается знаменитая двойная спираль, обеспечивающая возможность удвоения ДНК при размножении клетки. Задача удвоения решается с помощью специального белка-энзимы - полимеразы. Синтез начинается только если с ДНК прикреплен кусочек ее дополнения, Данное свойство активно используется в молекулярной биологии и молекулярных вычислениях. По сути своей ДНК + полимераза - это реализация машины Тьюринга , состоящая из двух лент и программируемого пульта управления. Пульт считывает данные с одной ленты, обрабатывает их по некоторому алгоритму и записывает на другую ленту. Полимераза также последовательно считывает исходные данные с одной ленты (ДНК) и на их основе формирует ленту как бы с результатами вычислений (дополнение Ватсона - Крика).

Немножко фантастические перспективы только подогревают наше любопытство. Между тем, мы еще не всё выяснили относительно машины Тьюринга. Как вы помните, в статье из Википедии её назвали расширением конечного автомата. Что же это такое конечный автомат? На него, к счастью, даётся ссылка. Заходя по ней, узнаём, что:

Конечный автомат

Абстрактные автоматы образуют фундаментальный класс дискретных моделей как самостоятельная модель, и как основная компонента машин Тьюринга , автоматов с магазинной памятью , конечных автоматов и других преобразователей информации.

С каждым определением мы всё больше вторгаемся в область чистой математики. Язык становится строже, появляются формальные определения, состоящие из математических символов. Если двигаться дальше, мы придём к теории алгоритмов и теории вычислимости. Путешествовать по страницам Википедии можно долго, но лучше запастись водой и едой, на случай забредания в пустыни аксиом и определений, или хотя бы надёжными ссылками на учебники по математике, например http://www.mccme.ru/free-books/ , или статьи журнала «Потенциал» ;)

Надеюсь, после этого объяснения вам стало немного яснее, что же такое машина Тьюринга?

Давайте вернёмся к истории этого термина.

Итак, как мы уже упоминали, Алан Тьюринг поведал миру о своей машине в 1937 году в так называемом Тезисе Чёрча-Тьюринга. Про Алана Тьюринга - первого хакера и пионера информатики, как написано на мемориальной доске гостиницы, где он родился, поведает нам статья «Алан Тьюринг». Текст статьи полностью приводить здесь не будем, но она и сама по себе не очень подробная.

Алан Тьюринг

Тьюринг, Алан Матисон (23 июня 1912 - 7 июня 1954) - английский математик, логик, криптограф, изобретатель Машины Тьюринга.

В самой статье больше про труды Тьюринга: помимо текста про машину Тьюринга, который мы еще приведем дальше, повествуется о том, что он работал над «проблемой зависания» (Забавно, не так ли? Компьютеров еще не было, и системы Windows тоже, а проблема зависания уже была.); героическая история про то, как Тьюринг взломал код «Энигмы» во время Второй Мировой Войны и тем самым спас Великобританию; факт о том, что он является основателем теории искусственного интеллекта, а также упоминание о знаменитом тесте Тьюринга. Сейчас этот тест уже не так часто используется как завязка научно-фантастического рассказа, однако проблема человеческого в машине всегда останется классикой, как и романы Айзека Азимова и Станислава Лема.

Несмотря на свою старомодность, тест Тьюринга всплыл неожиданным образом в современном мире общения по интернету. К примеру, можно встретить текст диалога двух пользователей ICQ, один из которых является «ботом», и задача - определить, какой именно. Или к Вам может постучаться незнакомый пользователь, возможно, ICQ-робот. Узнаете ли вы его? Изучая теорию, Вы, возможно, сумеете вовремя применить тест Тьюринга и не останетесь обмануты. Начать изучение можно с соответствующей статьи в Википедии, а затем пройтись по ссылкам, приводимым в конце статьи:

Тест Тьюринга

Тест Тьюринга - тест, предложенный Аланом Тьюрингом в 1950 г. в статье «Вычислительные машины и разум» (Computing machinery and intelligence) для проверки, является ли компьютер разумным в человеческом смысле слова.

Судья (человек) переписывается на естественном языке с двумя собеседниками, один из которых - человек, другой - компьютер. Если судья не может надёжно определить, кто есть кто, компьютер прошёл тест. Предполагается, что каждый из собеседников стремится, чтобы человеком признали его. С целью сделать тест простым и универсальным, переписка сводится к обмену текстовыми сообщениями.

Переписка должна производиться через контролируемые промежутки времени, чтобы судья не мог делать заключения исходя из скорости ответов. (Во времена Тьюринга компьютеры реагировали медленнее человека. Сейчас это правило необходимо, потому что они реагируют гораздо быстрее, чем человек).

Тест был инспирирован салонной игрой, в ходе которой гости пытались угадать пол человека, находящегося в другой комнате, путём написания вопросов и чтения ответов. В оригинальной формулировке Тьюринга, человек должен был притворяться человеком противоположного пола, а тест длился 5 минут. Сейчас эти правила не считаются необходимыми и не входят в спецификацию теста.

Тьюринг предложил тест, чтобы заменить бессмысленный, по его мнению, вопрос «может ли машина мыслить?» на более определённый.

Тьюринг предсказал, что компьютеры в конечном счёте пройдут его тест. Он считал, что к 2000 году, компьютер с памятью 1 миллиард бит (около 119 Мб) в ходе 5-минутного теста сможет обмануть судей в 30 % случаев. Это предсказание не сбылось. (Правда, на первом конкурсе Лебнера компьютерная программа «PC Therapist» на IBM PC 386 смогла ввести в заблуждение 5 судей из 10, но ей не засчитали результат, а в 1994 году конкурс усложнили.) Тьюринг также предсказал, что сочетание «мыслящая машина» не будет считаться оксюмороном , а обучение компьютеров будет играть важную роль в создании мощных компьютеров (с чем большинство современных исследователей согласны).

Пока что ни одна программа и близко не подошла к прохождению теста. Такие программы, как Элиза (ELIZA), иногда заставляли людей верить, что они говорят с человеком, как, например, в неформальном эксперименте, названном AOLiza. Но такие «успехи» не являются прохождением теста Тьюринга. Во-первых, человек в таких беседах не имел никаких оснований считать, что он говорит с программой, в то время как в настоящем тесте Тьюринга человек активно пытается определить, с кем он беседует. Во-вторых, документированые случаи обычно относятся к таким чатам, как IRC , где многие беседы отрывочны и бессмысленны. В-третьих, многие пользователи IRC используют английский как второй или третий язык, и бессмысленный ответ программы, вероятно, спишется ими на языковый барьер. В-четвертых, многие пользователи ничего не знают об Элизе и ей подобных программах и не могут распознать совершенно нечеловеческие ошибки, которые эти программы допускают.

Ежегодно производится соревнование между разговаривающими программами, и наиболее человекоподобной, по мнению судей, присуждается приз Лебнера (Loebner). Есть дополнительный приз для программы, которая, по мнению судей, пройдёт тест Тьюринга. Этот приз ещё не присуждался.

Самый лучший результат в тесте Тьюринга показала программа A.L.I.C.E. выиграв тест 3 раза (в 2000, 2001 и 2004).

Ссылки

  • Тьюринг А. М. Вычислительные машины и разум. // В сб.: Хофштадер Д., Деннет Д. Глаз разума. - Самара: Бахрах-М, 2003. - С. 47-59.
  • Книга на английском: Roger Penrose «The Emperor’s New Mind».
  • Статья Алана Тьюринга:
    • Alan Turing, «Computing Machinery and Intelligence», Mind, vol. LIX, no. 236, October 1950, pp. 433-460.
    • В сети:
  • Статья Дж. Оппи (G. Oppy) и Д. Дави (D. Dowe) о тесте Тьюринга из Стэнфордской Философской Энциклопедии (на английском)
  • «Turing Test: 50 Years Later» обзор 50-летней работы над тестом Тьюринга, с точки зрения 2000 г. (на английском).

Возвращаемся опять к машине Тьюринга. В выдержке из статьи про Алана Тьюринга утверждается, что впервые понятие машины Тьюринга было предложено в составе т. н. тезиса Чёрча-Тьюринга:

Выдержка из статьи Википедии «Алан Тьюринг»

Любая интуитивно вычислимая функция является частично вычислимой, или, эквивалентно, может быть вычислена с помощью некоторой машины Тьюринга.

Алан Тьюринг высказал предположение (известное как Тезис Чёрча-Тьюринга), что любой алгоритм в интуитивном смысле этого слова может быть представлен эквивалентной машиной Тьюринга. Уточнение представления о вычислимости на основе понятия машины Тьюринга (и других эквивалентных ей понятий) открыло возможности для строгого доказательства алгоритмической неразрешимости различных массовых проблем (то есть проблем о нахождении единого метода решения некоторого класса задач, условия которых могут варьироваться в известных пределах). Простейшим примером алгоритмически неразрешимой массовой проблемы является так называемая проблема применимости алгоритма (называемая также проблемой остановки). Она состоит в следующем: требуется найти общий метод, который позволял бы для произвольной машины Тьюринга (заданной посредством своей программы) и произвольного начального состояния ленты этой машины определить, завершится ли работа машины за конечное число шагов, или же будет продолжаться неограниченно долго.

В статье под названием «Те́зис Чёрча-Тью́ринга» про него пишут так:

Те́зис Чёрча-Тью́ринга

Те́зис Чёрча-Тью́ринга - фундаментальное утверждение для многих областей науки, таких, как теория вычислимости , информатика , теоретическая кибернетика и др. Это утверждение было высказано Алонзо Чёрчем и Аланом Тьюрингом в середине 1930-х годов.

В самой общей форме оно гласит, что любая интуитивно вычислимая функция является частично вычислимой , или, эквивалентно, может быть вычислена с помощью некоторой машины Тьюринга .

Тезис Чёрча-Тьюринга невозможно строго доказать или опровергнуть, поскольку он устанавливает «равенство» между строго формализованным понятием частично вычислимой функции и неформальным понятием «интуитивно вычислимой функции».

Физический тезис Чёрча-Тьюринга гласит: Любая функция, которая может быть вычислена физическим устройством, может быть вычислена машиной Тьюринга .

С этого перекрёстка можно двинуться в сторону, к примеру, теории вычислимости. А можно попытаться выяснить, кто такой этот загадочный Чёрч, вместе с которым Алан Тьюринг выдвинул свой тезис.

Универсальная машина Тьюринга

Универсальной машиной Тью́ринга называют машину Тьюринга , которая может заменить собой любую машину Тьюринга. Получив на вход программу и входные данные, она вычисляет ответ, который вычислила бы по входным данным машина Тьюринга, чья программа была дана на вход.

Формальное определение

Программу любой детерминированной машины Тьюринга можно записать, используя некоторый конечный алфавит, состоящий из символов состояния, скобок, стрелки и т. п.; обозначим этот машинный алфавит как Σ 1 {\displaystyle \Sigma _{1}} . Тогда универсальной машиной Тьюринга U для класса машин с алфавитом Σ 2 {\displaystyle \Sigma _{2}} и k входными лентами называется машина Тьюринга с k+1 входной лентой и алфавитом Σ 1 ∪ Σ 2 {\displaystyle \Sigma _{1}\cup \Sigma _{2}} такая, что если подать на первые k лент входное значение, а на k+1 - правильно записанный код некоторой машины Тьюринга , то U выдаст тот же ответ, какой выдала бы на этих входных данных M 1 {\displaystyle M_{1}} , или будет работать бесконечно долго, если M 1 {\displaystyle M_{1}} на этих данных не остановится.

Теорема об универсальной машине Тьюринга утверждает, что такая машина существует и моделирует другие машины с не более чем квадратичным замедлением (то есть если исходная машина произвела t шагов, то универсальная произведёт не более ct 2 ). Доказательство у этой теоремы конструктивное (такую машину несложно построить, надо только аккуратно её описать). Теорема была предложена и доказана Тьюрингом в 1936-37 г.

Программная реализация на языке программирования Delphi достаточно проста. С одной из таких реализаций можно ознакомиться на сайте http://kleron.ucoz.ru/load/24-1-0-52 . Предусмотрена возможность загрузки и сохранения в файл Excel.

Недетерминированная машина Тьюринга

Вероятностная машина Тьюринга

Обобщение детерминированной машины Тьюринга, в которой из любого состояния и значений на ленте машина может совершить один из нескольких (можно считать, без ограничения общности - двух) возможных переходов, а выбор осуществляется вероятностным образом (подбрасыванием монетки).

Вероятностная Машина Тьюринга похожа на недетерминированную машину Тьюринга, только вместо недетерминированного перехода машина выбирает один из вариантов с некоторой вероятностью.

Существует также альтернативное определение:

Вероятностная машина Тьюринга представляет собой детерминированную машину Тьюринга, имеющую дополнительно аппаратный источник случайных битов, любое число которых, например, она может «заказать» и «загрузить» на отдельную ленту и потом использовать в вычислениях обычным для МТ образом.

Класс алгоритмов, завершающихся за полиномиальное время на вероятностной машине Тьюринга и возвращающих ответ с ошибкой менее 1/3, называется классом BPP .

Машина Тьюринга - это строгое математическое построение, математический аппарат (аналогичный, например, аппарату дифференциальных уравнений), созданный для решения определенных задач. Этот математический аппарат был назван “машиной” по той причине, что по описанию его составляющих частей и функционированию он похож на вычислительную машину. Принципиальное отличие машины Тьюринга от вычислительных машин состоит в том, что ее запоминающее устройство представляет собой бесконечную ленту: у реальных вычислительных машин запоминающее устройство может быть как угодно большим, но обязательно конечным. Машину Тьюринга нельзя реализовать именно из-за бесконечности ее ленты. В этом смысле она мощнее любой вычислительной машины.

В каждой машине Тьюринга есть две части:

1) неограниченная в обе стороны лента , разделенная на ячейки;

2) автомат (головка для считывания/записи, управляемая программой).

С каждой машиной Тьюринга связаны два конечных алфавита : алфавит входных символов A = {a 0 , a 1 , ..., a m }и алфавит состояний Q = {q 0 , q 1 , ..., q p }. (С разными машинами Тьюринга могут быть связаны разные алфавиты A и Q .) Состояние q 0 называется пассивным . Считается, что если машина попала в это состояние, то она закончила свою работу. Состояние q 1 называется начальным . Находясь в этом состоянии, машина начинает свою работу.

Входное слово размещается на ленте по одной букве в расположенных подряд ячейках. Слева и справа от входного слова находятся только пустые ячейки (в алфавит А всегда входит пустая буква а 0 - признак того, что ячейка пуста).

Автомат может двигаться вдоль ленты влево или вправо, читать содержимое ячеек и записывать в ячейки буквы. Ниже схематично нарисована машина Тьюринга, автомат которой обозревает первую ячейку с данными.

Автомат каждый раз “видит” только одну ячейку. В зависимости от того, какую буквуai он видит, а также в зависимости от своего состояния qj автомат может выполнять следующие действия:

  • · записать новую букву в обозреваемую ячейку;
  • · выполнить сдвиг по ленте на одну ячейку вправо/влево или остаться неподвижным;
  • · перейти в новое состояние.

То есть у машины Тьюринга есть три вида операций. Каждый раз для очередной пары (q j , a i ) машина Тьюринга выполняет команду, состоящую из трех операций с определенными параметрами.

Программа для машины Тьюринга представляет собой таблицу, в каждой клетке которой записана команда.

Клетка (q j , a i ) определяется двумя параметрами - символом алфавита и состоянием машины. Команда представляет собой указание: куда передвинуть головку чтения/записи, какой символ записать в текущую ячейку, в какое состояние перейти машине. Для обозначения направления движения автомата используем одну из трех букв: “Л” (влево), “П” (вправо) или “Н” (неподвижен).

После выполнения автоматом очередной команды он переходит в состояние q m (которое может в частном случае совпадать с прежним состоянием q j ). Следующую команду нужно искать в m -й строке таблицы на пересечении со столбцом a l (букву a l автомат видит после сдвига).

Договоримся, что когда лента содержит входное слово, то автомат находится против какой-то ячейки в состоянии q 1. В процессе работы автомат будет перескакивать из одной клетки программы (таблицы) в другую, пока не дойдет до клетки, в которой записано, что автомат должен перейти в состояние q 0 . Эти клетки называются клетками останова . Дойдя до любой такой клетки, машина Тьюринга останавливается .

Несмотря на свое простое устройство, машина Тьюринга может выполнять все возможные преобразования слов, реализуя тем самым все возможные алгоритмы.

Машина Поста

Машина Поста (МП) - абстрактная вычислительная машина, предложенная Эмилем Леоном Постом, которая отличается от машины Тьюринга большей простотой. Обе машины «эквивалентны» и были созданы для уточнения понятия «алгоритм».

Принцип работы

Машина Поста состоит из каретки (или считывающей и записывающей головки) и разбитой на секции бесконечной в обе стороны ленты (см. пример ниже). Каждая секция ленты может быть либо пустой - 0, либо помеченной меткой 1. За один шаг каретка может сдвинуться на одну позицию влево или вправо, считать, поставить или стереть символ в том месте, где она стоит. Работа машины Поста определяется программой, состоящей из конечного числа строк. Для работы машины нужно задать программу и ее начальное состояние (т. е. состояние ленты и позицию каретки). Кареткой управляет программа, состоящая из строк команд. Каждая команда имеет следующий синтаксис:

где i - номер команды, K – действие каретки, j - номер следующей команды (отсылка).

Всего для машины Поста существует шесть типов команд:

1) V j - поставить метку, перейти к j-й строке программы.

2) X j - стереть метку, перейти к j-й строке программы.

3) <- j - сдвинуться влево, перейти к j-й строке программы.

a. j - сдвинуться вправо, перейти к j-й строке программы.

4) ? j1; j2 - если в ячейке нет метки, то перейти к j1-й строке программы, иначе перейти к j2-й строке программы.

5) ! – конец программы (стоп).

У команды «стоп» отсылки нет. После запуска возможны варианты:

Работа может закончиться невыполнимой командой (стирание несуществующей метки или запись в помеченное поле);

Один из важнейших вопросов современной информатики — существует ли формальный исполнитель, с помощью которого можно имитировать любого формального исполнителя. ответ на этот вопрос был получен почти одновременно двумя выдающимися учеными — А. Тьюрингом и Э. Постом. Предложенные ими исполнители отличались друг от друга, но оказалось, что они могут имитировать друг друга, а главное — имитировать работу любого формального исполнителя.

Что такое формальный исполнитель? Что значит — один формальный исполнитель имитирует работу другого формального исполнителя? Если Вы играли в компьютерные игры — на экране объекты беспрекословно подчиняются командам играющего. Каждый объект обладает набором допустимых команд. В то же время компьютер сам является исполнителем, причем не виртуальным, а реальным. Вот и получается, что один формальный исполнитель имитирует работу другого формального исполнителя.

Рассмотрим работу Машины Тьюринга.

Машина Тьюринга представляет собой бесконечную ленту, поделенную на ячейки, и каретку (считывающе-печатающее устройство), которая движется вдоль ленты.

Таким образом Машина Тьюринга формально описывается набором двух алфавитов:

A={a1, a2, a3, …, an} — внешний алфавит, служит для записи исходных данных

Q={q1, q2, q3,…, qm} — внутренний алфавит, описывает набор состояний считывающе-печатного устройства.

Каждая ячейка ленты может содержать символ из внешнего алфавита A = {a0,a1,…,an} (В нашем случае A={0, 1})

Допустимые действия Машины Тьюринга таковы:

1) записать какой-либо символ внешнего алфавита в ячейку ленты (символ, бывший там до того, затирается)

2) сместиться в соседнюю ячейку

3) сменить состояние на одно из обозначенных символом внутреннего алфавита Q

Машина Тьюринга — это автомат, который управляется таблицей.

Строки в таблице соответствуют символам выбранного алфавита A, а столбцы — состояниям автомата Q = {q0,q1,…,qm}. В начале работы машина Тьюринга находится в состоянии q1. Состояние q0 — это конечное состояние, попав в него, автомат заканчивает работу.

В каждой клетке таблицы, соответствующей некоторому символу ai и некоторому состоянию qj, находится команда, состоящая из трех частей
· символ из алфавита A
· направление перемещения: «>» (вправо), «<» (влево) или «.» (на месте)
· новое состояние автомата

В приведенной выше таблице алфавит A ={0, 1, _} (содержит 3 символа), а внутренний алфавит Q={q1, q2, q3, q4, q0}, q0 — состояние, заставляющее каретку остановиться.

Рассмотрим несколько задач решением. Скачать машину Тьюринга Вы можете на сайте в разделе .

Задача 1. Пусть A={0, 1, _}. На ленте в ячейках находятся символы из алфавита в следующем порядке 0011011. каретка находится над первым символом. Необходимо составить программу, которая заменит 0 на 1, 1 на 0 и вернет каретку в первоначальное положение.

Теперь определимся с состояниями каретки. Я называю их — «желания каретки что-то сделать».

q1) Каретка должна пойти вправо: если видит 0 меняет его на 1 и остается в состоянии q1, если видит 1 — меняет его на 0 и остается в состоянии q1, если видит _ — ворачивается назад на 1 ячейку «желает что-то другое», т.е переходит в состояние q2. Запишем наши рассуждения в таблицу исполнителя. Синтаксис смотрите в справке к программе)

q2) Теперь опишем «желание каретки» q2. Мы должны вернуться в первоначальное положение. Для этого: если видим 1 оставляем ее и остаемся в состоянии q2 (с тем же желанием дойти до конца ряда символов); если видим 0 — оставляем его и продолжаем двигаться влево в состоянии q2; видим _ — сдвигается вправо на 1 ячейку. Вот вы оказались там, где требуется в условии задачи. переходим в состояние q0.

Посмотреть работу программы можно на видео:

Задача 2. Дано: конечная последовательность 0 и 1 (001101011101). Необходимо выписать их после данной последовательности, через пустую ячейку, а в данной последовательности заменить их на 0. Например:

Из 001101011101 получим 000000000000 1111111.

Как видите, семь единиц записались после данной последовательности, а на их местах стоят нолики.

Приступим к рассуждениям. Определим, какие состояния необходимы каретке и сколько.

q1) увидел 1 — исправь на нолик и перейди в другое состояние q2 (новое состояние вводится, чтобы каретка не поменяла на нули все единицы за один проход)

q2) ничего не менять, двигаться к концу последовательности

q3) как только каретка увидела пустую ячейку, она делает шаг вправо и рисует единичку, если она видит единичку — то движется дальше, чтобы подписать символ в конце. Как только нарисовал единицу, переходим в состояние q4

q4) проходим по написанным единицам, ничего не меняя. Как только доходим до пустой ячейки, разделяющей последовательность от единиц, переходим с новое состояние q5

q5) в этом состоянии идем начало последовательности, ничего не меняя. Доходим до пустой ячейки, разворачиваемся и переходим в состояние q1

Состояние q0 каретка примет в том случае, когда она пройдет в состоянии q1 до конца данной последовательности и встретит пустую ячейку.

Получим такую программу:

Работу Машины Тьюринга можете посмотреть на видео ниже.

В логике с помощью понятия машины Тьюринга строится теория неразрешимых проблем, однако в вычислительной практике чаще приходится иметь дело с разрешимыми, но “трудно решаемыми” проблемами. Выбирая и здесь в качестве вычислительной модели машину Тьюринга, мы руководствуемся тем, что она проста и допускает те же языки, что и компьютер, причем сложность вычислений на машине Тьюринга полиномиальна от числа шагов компьютера.

Машина Тьюринга представляет собой абстрактную вычислительную машину, состоящую из управления с конечным числом состояний и бесконечной ленты, разделенной на ячейки, в каждой из которых хранится один ленточный символ, и одна из ячеек является текущей позицией ленточной головки. Формальная запись машины Тьюринга - это упорядоченный набор M = (X, Q, q 0 , F, I), где

X – внешний алфавит символов (букв на ленте), включающий символ L;

Q – конечный алфавит внутренних состояний;

q 0 – инициальное состояние (начало работы), q 0 Î Q;

F– множество заключительных состояний, FÌ Q;

I - множество инструкций, или машинных команд, каждая из которых принадлежит множеству (Q \ F) ´ X ´ {®} ´ Q ´ X ´ {R,L,S}.

Переходы осуществляются на основе текущего состояния и обозреваемого считывающей головкой символа к следующему состоянию, переписыванию символа и сдвигу головки (вправо R, влево L, на месте S).

Можно определить функцию переходов

d: (Q \ F) ´ X* ® Q ´ X* ´ {R,L,S}, где X* -слова в алфавите X.

В случае однозначной функции d машина Тьюринга называется детерминированной машиной Тьюринга.

Текущей конфигурацией машины Тьюринга называют цепочку значащих (отличных от L) символов, записанных на ленте в данный момент времени, вместе с символом состояния, помещенным в цепочку перед обозреваемым символом.

Останов (завершение работы) происходит в заключительном состоянии или когда левая часть (до ®) ни одной из машинных команд не содержится в полученной конфигурации. Говорят, что машина допускает вход, если она останавливается на нем в заключительном состоянии.

В качестве примера рассмотрим работу детерминированной машины Тьюринга, вычисляющей функцию ïm - nï. Упорядоченную пару натуральных чисел (m,n) представляем как слово 0 m 10 n в алфавите X \ {L} = {0,1}, ячейки слева и справа от которого содержат символ L.

Q 0 0 ® LRq 1 Состояния Символ

Q 1 0 ® 0Rq 1 0 1 L

q 1 1 ® 1Rq 2 q 0 LRq 1 1Sq 5 0Sq 5

q 2 0 ® 1Lq 3 q 1 0Rq 1 1Rq 2 ¾

q 2 1 ® 1Rq 2 q 2 1Lq 3 1Rq 2 LLq 4

q 3 1 ® 1Lq 3 q 3 0Lq 3 1Lq 3 LRq 0

q 3 0 ® 0Lq 3 q 4 0Lq 4 LLq 4 0Sq 5

q 3 L ® LRq 0 q 5 ¾ LRq 5 ¾

q 2 L ® LLq 4 *

q 4 1 ® LLq 4 Таблица 1. Программа вычисления функции ôm - nô,

q 4 0 ® 0Lq 4 где функция переходов задается таблицей

q 0 1 ® 1Sq 5 *

Машина Тьюринга M допускает (отвергает) слово wÎ X * , если она останавливается на нем, придя в допускающее (заключительное) состояние. Машина допускает язык LÍ X * , если она допускает все слова языка L. Машина M распознает язык LÍ X * , если она допускает все слова из L и останавливается на словах из X * \ L, не находясь в заключитель ном состоянии. Языки, допускаемые машиной Тьюринга, назовем рекурсивно перечислимым.

Язык L допускается (распознается) за полиномиальное время , если существует машина M, которая допускает (распознает) язык L, причем всякое слово wÎ L допускается (распознается) за время O(n k), где n – длина слова w, а k – не зависящее от w число.

Теперь можно определить класс P, как множество языков LÍ {0,1} * , распознаваемых за полиномиальное время.

Теорема. Класс P есть множество языков, допускаемых за полиномиальное время.

Доказательство. В одну сторону тривиально, если машина M распознает язык L, то она и допускает язык L. Обратно, пусть язык L допускается машиной M за время O(n k), т.е. существует константа c, что любое слово из L длины n допускается не более, чем за T = c×n k шагов. С другой стороны, слова, не принадлежащие L, не допускаются ни за какое время. Построим машину M * , которая на слове w моделирует не более Т = c×n k шагов машины M и останавливается, выдавая 1, если M(w)=1, в противном случае - останавливается, сделав Т = c×n k шагов, выдавая на выход 0. Таким образом, машина M * распознает язык L и сложностной класс P можно рассматривать, как множество языков, допускаемых за полиномиальное время. “

Многоленточная машина Тьюринга.

Для имитации работы компьютера используются многоленточные машины Тьюринга. В начальной конфигурации многоленточной машины на первой ленте размещается вход (конечная последовательность символов, куда не входит L), все клетки остальных лент содержат символ L, считывающие головки всех лент находятся в начальном состоянии.

За один переход осуществляются следующие действия:

Управление переходит в новое состояние,

На каждой ленте записывается новый (или тот же) символ;

Считывающие головки каждой из лент независимо сдвигаются на одну ячейку (R,L,S).

Языки, допускаемые одноленточными машинами Тьюринга, рекурсивно перечислимы. Допустимы ли многоленточными машинами не рекурсивно перечислимые языки? Ответ в следующей теореме.

Теорема. Каждый язык L, допускаемый многоленточной машиной Тьюринга, рекурсивно перечислим.

Доказательство. Одноленточную машину Тьюринга можно представить, как многодорожечную , задавая ее аргументы в виде кортежей. При этом одна дорожка хранит данные, а другая отметку. Смоделируем k - ленточную машину M как многодорожечную машину N, содержащую 2k дорожек, где каждая вторая содержит маркер, указывающий позицию головки соответствующей ленты. Машина N должна посетить каждый из маркеров головок k лент и изменить соответствующим образом символ, представляющий соответствующую ленту, перемещая маркер в том направлении, как это происходило на соответствующей ленте. Наконец, N изменяет состояние М, записанное в конечном управлении N. В качестве допускающих состояний N выбираются все те состояния, в которых запоминалось допускающее состояние M. Таким образом, машина M и N одновременно допускают язык L. Но все языки, допускаемые одноленточной машиной N, рекурсивно перечислимы, поэтому рекурсивно перечислимы все языки, допускаемые многоленточной машиной M. “

Теорема. Время, необходимое одноленточной машине N для имитации n переходов k-ленточной машины M, есть O(n 2).

Доказательство. После n переходов машины M маркеры головок разделены не более, чем 2n клетками, так что и машине N надо сдвинуться не более, чем на 2n клеток вправо, чтобы найти все маркеры головок. Теперь ей надо совершить проход влево, изменяя содержимое M лент и сдвигая головочные маркеры, что потребует не более 2n сдвигов влево плюс не более 2k переходов для изменения направления движения и записи маркера в клетку. Таким образом, число переходов N для имитации одного из переходов машины M не более 4n+2k, т.е. O(n). Для n переходов требуется времени в n раз больше, т.е. O(n 2). “

Различие во времени вычисления на машинах с разным числом лент сохраняет полиномиальную сложность и для одноленточной машины ограничено с×T(n) 2 , а емкость - с×S(n) (для входа длины n), где T(n), S(n) – параметры k-ленточных машин. Зависимость между емкостью и временем для k-ленточных машин линейная: S £ kT; для входа w длины n

Недетерминированные машины Тьюринга.

По причинам, которые вскоре будут понятны, недетерминированные машины Тьюринга являются ключевым понятием в теории NP-полных задач. Недетерминированная машина Тьюринга отличается от обычной (детерминированной) машины Тьюринга тем, что может иметь более одного перехода от текущей конфигурации к следующей. Недетерминированная машина допускает слово w, если существует хотя бы одна цепочка конфигураций, ведущая от начальной конфигурации в заключительную. Существование других последовательностей конфигураций, не ведущих в заключительное (допускающее) состояние не имеет значение. Работу недетерминированной машины на входе w можно представить в виде дерева, где каждый путь из корня w в лист представляет некоторую последовательность возможных шагов машины. Если s w кратчайшая последовательность возможных шагов работы машины, которая оканчивается допускающей конфигурацией, то ½s w ½ есть время, затраченное машиной на обработку входа w. Если на входе w никакая последовательность не приводит к допускающей конфигурации, то время, затраченное на обработку w не определено. Считается, что недетерминированная машина Тьюринга на входе w параллельно выполняет все возможные последовательности шагов, пока не достигнет допускающего состояния или окажется, что ее программа не применима к полученной конфигурации.

Остается открытым вопрос, существуют ли языки, допускаемые недетерминированной машиной Тьюринга с данной временной и емкостной сложностью и не допускаемые никакой детерминированной машиной с той же сложностью.

Недетерминированные машины Тьюринга допускают те же языки, что и детерминированные. Однако, надо заметить, что последним приходится за это расплачиваться сильным увеличением временной сложности.

Обозначим через L(M) множество всех слов wÎX*, допускаемых машиной M, L(M) называют языком машины M.

Теорема. Если M недетерминированная машина с полиномиальной временной сложностью T(n), то существует детерминированная машина M , с L(M ) = L(M) и временной сложностью O(c T(n)).

Доказательство. Доказательство основывается на том, что для любой недетерминированной машины Тьюринга M строится детерминированная машина M , которая исследует последовательности конфигураций (пути в дереве недетерминированной машины) и если находит хотя бы одну с допускаемым состоянием, то сама переходит в допускаемое состояние. Обследованные конфигурации помещаются в очередь, длины k (k=1,2…) Построим детерминированную многоленточную машину M , моделирующую недетерминированную машину M. Первая лента машины M хранит последовательность конфигураций машины M и метку на текущее состояние последней. Записи слева от метки предполагаются исследованными и их в дальнейшем игнорируют. Конфигурации справа рассматриваются в порядке очереди. Программа машины M хранится в конечном управлении M . Обработка текущей конфигурации на первой ленте состоит в следующем:

Машина M проверяет состояние и обозреваемый символ и, если состояние допускающее, также переходит в допускающее состояние.

Если состояние не допускающее и из данной конфигурации есть k переходов, то M использует вторую ленту для создания k копий, которые записываются в конце очереди на ленте 1.

M изменяет k конфигураций в соответствии с программой машины M.

M перемещает отметку текущей конфигурации на следующую справа и цикл повторяется с шага 1.

Допустим, что m есть максимальное число выборов машины M в любой конфигурации. Тогда существует одно начальное состояние M, не более m конфигураций, достижимых за 1 шаг, не более m 2 конфигураций, достижимых за 2 шага и т.д. Таким образом, после n переходов машина M может достичь не более 1+ m +m 2 +…+m n £ n×m n конфигураций. Порядок, в котором машина M исследует конфигурации, называется “поиском в ширину”, т.е. M исследует все достижимые конфигурации машины M за 0 шагов, достижимые за 1 шаг и т.д.

Допускающая конфигурация машины M будет рассмотрена машиной M в числе первых n×m n конфигураций. Таким образом, если машина M допускает, то машина M также допускает, т.е. L(M) = L(M ). “

Отметим, что работа построенной детерминированной машины M может потребовать экспоненциально большего времени, чем время работы недетерминированной машины M, которую она моделирует. Разница между полиномиальным и экспоненциальным временем - это граница того, что можно решить с помощью компьютера, а что практически нерешаемо.

Теорема. Если M недетерминированная машина Тьюринга с емкостной сложностью S(n), то найдется детерминированная машина Тьюринга Mс емкостной сложностью O(S 2 (n)) и L(M) = L(M).

Доказательство. Пусть M недетерминированная машина Тьюринга (возможно k-ленточная) с емкостной сложностью S(n). Тогда число различных конфигураций, в которые машина M может попасть из начальной с входом длины n, не превосходит некоторого числа c S (n) , точнее ½Q½(½X½+1) k S(n) (S(n)) k , где k – число лент. Тогда число переходов от конфигурации C 1 к конфигурации C 2 (С 1 ├ С 2) на любой из лент не превосходит c S (n) . Можно выяснить, существует ли переход С 1 ├ С 2 за 2i шагов, проверив для всех C 3 существует ли переход С 1 ├ С 3 и С 3 ├ С 2 за i шагов. После каждого обращения к процедуре число i уменьшается вдвое.

Идея моделирования машиной M ’ работы машины M приведена в доказательстве предыдущей теоремы. Стратегия работы машины M ’ -

установить приведет ли начальная конфигурация C 0 к какой-нибудь допускающей конфигурации C f . Чтобы найти верхнюю емкостную границу для машины M ’ , расположим конфигурации (длины O(S(n))) на стеках того же размера. В каждый момент времени число фрагментов стека не превосходит 1+ log éc S (n) ù , т.е. O(S(n)). Для всего стека машины M потребуется O(S 2 (n)) ячеек. “

Теорема. Если язык L допускается k-ленточной недетерминированной машиной Тьюринга M = (X, Q, q 0 , F, I) с временной сложностью T(n), то он допускается одноленточной недетерминированной машиной с временной сложностью O(T 2 (n)).

Доказательство. Пусть M 1 одноленточная недетерминированная машина Тьюринга, имеющая на ленте 2k дорожек, т.е. ленточные символы машины M 1 представляются 2k-членными кортежами, в которых на нечетных местах стоят символы алфавита X, а на четных – либо символ L, либо маркер #. Дорожки с нечетными номерами соответствуют k лентам машины M, а каждая дорожка с четным номером 2j содержит символ L во всех ячейках, кроме одной, где стоит маркер #, отмечающий положение головки машины M на ленте j, которой соответствует дорожка 2j-1. Машина M 1 моделирует один шаг работы машины M следующим образом. Допустим, что вначале головка машины M 1 обозревает клетку, содержащую самую левую головку машины M.

Головка машины M 1 движется вправо, пока не минует все k маркеров положений головок на дорожках с четными номерами. При этом M 1 запоминает в своем состоянии символы, обозреваемые каждой из головок машины M. Теперь M 1 делает недетерминированное развлетвление, исходя из состояния машины M, которое машина M 1 запомнила в своем состоянии, и обозреваемых машиной M на лентах символов, которые машина M 1 также нашла.

Выбрав для моделирования шаг машины M, машина M 1 изменяет в соответствии с ним состояние машины M, которое она помнит в своем состоянии. Затем M 1 сдвигает свою головку влево и проходит все маркеры, изменяя ленточный символ на дорожке над маркером и сдвигая маркер не более чем на одну клетку (L,R,S).

Машина M 1 промоделировала один шаг работы машмны M. Действия машины M 1 на этом шаге детерминированы. Ее головка находится правее левого маркера не более чем на две ячейки. Начиная с этого маркера цикл можно повторить.

Если машина M допускает цепочку w длины n, то совершает при этом не более T(n) переходов. Очевидно, что в последовательности из T(n) шагов головки мащины M могут разойтись не более чем на T(n) клеток, и, значит, M 1 может смоделировать один шаг этой последовательности не более чем за O(T(n)) своих шагов. Таким образом, M 1 допускает цепочку w, выполняя не более чем O(T 2 (n)) переходов. Отсюда следует, что M 1 допускает язык L и имеет временную сложность O(T 2 (n)). “

Следствие 1. Если язык допускается k-ленточной детерминированной машиной Тьюринга с временной сложностью T(n), то он допускается одноленточной детерминированной машиной Тьюринга с временной сложностью O(T 2 (n)). “

Следствие 2 . Если язык L допускается k-ленточной недетерминированной машиной Тьюринга с емкостной сложностью S(n), то он допускается одноленточной недетерминированной машиной Тьюринга с емкостной сложностью S(n). “

Следствие 3. Если язык допускается k-ленточной детерминированной машиной Тьюринга с емкостной сложностью S(n), то он допускается одноленточной детерминированной машиной Тьюринга с емкостной сложностью S(n). “

Имитация машины Тьюринга на компьютере и компьютера на машине Тьюринга.

К основным компонентам вычислительной машины относятся оперативная память и процессор. Программы и данные, представленные в двоичном алфавите, помещаются в память. При выполнении программы отдельные ее команды и нужные данные извлекаются из памяти в процессор и наоборот – значения, получаемые при выполнении команд, записываются в ячейки памяти.

Память состоит из некоторого числа запоминающих ячеек (регистров), предназначенных для промежуточного хранения значений операндов и для хранения другой информации, необходимой для выполнения команд, регистров для управления запоминающими ячейками, адресов ячеек и полей самих ячеек.

Процессор состоит из устройства управления (УУ) и арифметического устройство (АУ). Устройство управления содержит счетчик тактов, команд и т.д., вырабатывает управляющие сигналы для выполнения команд, передачи данных и т.д. Процессор содержит регистры операндов, линии связи и линии задержки для непосредственной реализации процессов вычислений.

Наряду с процессором и памятью компьютеру необходимы еще устройства ввода/вывода.

Имитация машины Тьюринга на компьютере. Пусть M - машина Тьюринга, одним из составляющих которой является ее конечное управление. Поскольку M имеет конечное число состояний и конечное число правил перехода, программа компьютера может закодировать состояния в виде цепочек символов, как и символы ее внешнего алфавита, и использовать таблицу переходов машины M для преобразования цепочек. Бесконечную ленту машины Тьюринга можно имитировать сменными дисками, размещаемыми в двух магазинах, соответственно для данных, расположенных слева и справа от считывающей головки на ленте. Чем дальше в магазине расположены данные, тем дальше они от головки на ленте.

Для имитации компьютера на машине Тьюринга существенны две вещи:

Существуют ли инструкции, выполняемые компьютером, и недоступные для машины Тьюринга;

Работает ли компьютер быстрее машины Тьюринга, т.е. более, чем полиномиальная зависимость разделяет время работы компьютера и машины Тьюринга при решении какой-то проблемы.

Неформальная модель реального компьютера :

Память, состоящая из последовательности слов и их адресов. В качестве адресов будут использоваться натуральные числа 0,1, …;

Программа компьютера, записанная в слова памяти, каждое из которых представляет простую инструкцию. Допускается “непрямая адресация” по указателям;

Каждая инструкция использует конечное число слов и изменяет значение не более одного слова;

Имеются слова памяти с быстрым доступом (регистры), но скорость доступа к различным словам влияет лишь на константный сомножитель, что не искажает полиномиальную зависимость.

Возможная конструкция машины Тьюринга для имитации компьютера

представлена на рис.

Рис стр 369

Машина имеет несколько лент. Первая лента представляет всю память компьютера – адреса и значения (в двоичной системе). Адреса заканчиваются маркером *, значения – маркером #. Начало и конец записей 1-й ленты обозначаются маркером $. Вторая лента – “счетчик инструкций”, содержит одно двоичное целое, представляющее одну из позиций считываюшей головки на первой ленте, адрес инструкции, которая должна быть выполнена следующей. Третья лента содержит адрес и значение по нему после того, как этот адрес устанавливается на первой ленте. Для выполнения инструкции машина Тьюринга должна найти значение по одному или нескольким адресам памяти, где хранятся данные, участвующие в вычислении. Нужный адрес копируется на ленту 3 и сравнивается с адресами на ленте 1 до совпадения. Значение по этому адресу копируется на третью ленту и перемещается на нужное место, как правило, по одному из начальных адресов, представляющих регистры компьютера. Четвертая лента имитирует входной файл. Пятая лента - рабочая память, служит для выполнения вычислений. Допускающая инструкция машины Тьюринга соответствует выводу на печать в выходном файле.

Функционирование такой имитирующей машины:

1.Найдя на 1-й ленте адрес, совпадающий с номером инструкции на 2-й ленте, исследуем значение по нему и копируем на 3-ю ленту. Первые биты инструкции задают действие (копировать, вставить, ветвиться и т.д.), оставщиеся биты – адрес или адреса, используемые в этом действии.

2. Если в инструкции содержится значение по некоторому адресу, то этот адрес копируется на 3-ю ленту, а позиция инструкции на 2-ю дорожку 1-й ленты.

a) скопировать по другому адресу;

Второй адрес извлекается из инструкции, помещается на 3-ю ленту, находится на 1-й ленте и значение по нему копируется в зарезервированное для него пространство. Если для нового значения надо больше (меньше) памяти, чем для старого, пространство изменяется путем сдвига, а именно,

(1) на рабочую ленту копируется часть ленты справа от того места, куда надо поместить новое значение;

(2) новое значение записывается на 1-ю ленту;

(3) рабочая часть копируется обратно на 1-ю ленту справа от нового значения.

b) прибавить найденное значение по другому адресу;

Ищем второй адрес на первой ленте, выполняем сложение значения по этому адресу и записанному на 3-й ленте.

c) перейти к выполнению инструкции по адресу, записанному на 3-й ленте, для чего лента 3 копируется на ленту 2, и цикл инструкций начинается снова.

4. Выполнив инструкцию (не являющуюся переходом), прибавляем 1 к счетчику на ленте 2 и вновь начинаем цикл инструкции.

Теперь надо убедиться, что если проблему можно решить за полиномиальное время на компьютере, то ее можно решить за полиномиальное время на машине Тьюринга и наоборот. Как следует из доказанных выше теорем, достаточно использовать многоленточную машину Тьюринга, так как различие во времени работы одноленточной и многоленточной машин Тьюринга полиномиально.

Время работы машины Тьюринга, имитирующей компьютер

Введем следующие ограничения на модель компьютера:

Ни одна компьютерная инструкция не должна порождать слово, длиннее, чем на 1 бит, своих операндов.

Инструкция, применяемая к словам длины m должна выполняться не более, чем за 0(m 2) шагов на многоленточной машине Тьюринга.

Назовем такие операции допустимыми.

Этим условиям удовлетворяют сложение, сдвиг на 1 бит, сравнение значений, которые выполняются на многоленточной машине Тьюринга за 0(m) шагов. А также умножение m-битовых целых, если его имитировать с помощью m последовательных сложений со сдвигами на 1 бит влево. Время выполнения операции умножения будет пропорционально квадрату длины сомножителей. .

Теорема. Для компьютера, обладающего указанными свойствами, описанная выше модель машины Тьюринга может имитировать m шагов компьютера не более, чем за 0(m 3)шагов.

Доказательство. Вначале первая лента содержит только программу компьютера, длина которой не зависит от n (числа шагов выполнения инструкций). Наибольшее из компьютерных слов или адресов, встречающихся в программе, обозначим через c, а через d - число слов программы.

После выполнения n шагов компьютер не может породить слово, длиннее c+n, и не может создать или использовать адрес, занимающий больше c+n битов. Каждая инструкция порождает не более одного нового адреса, получающего значение, поэтому после выполнения n инструкций имеем d+n адресов. Каждый адрес-значение занимает не более 2(c+n) +2 разрядов, а после выполнения n инструкций не больше 2(d+n)(c+n+1), или 0(n 2)

Для просмотра адресов одной инструкции компьютера требуется времени 0(n 2), слова имеют длину 0(n), а инструкции выполняются машиной Тьюринга за время 0(n 2), сдвиг для создания пространства для нового слова включает копирование данных объемом 0(n 2) с ленты 1 на рабочую ленту и обратно. Таким образом, машина Тьюринга имитирует один шаг компьютера за 0(n 2) своих шагов, а n шагов можно проимитировать за 0(n 3) шагов машины Тьюринга. “

Теорема. Выполнение n шагов работы компьютера можно проимитировать на одноленточной машине Тьюринга не более чем за 0(n 6) шагов.

Таким образом, машина Тьюринга может имитировать память и управление реального компьютера, используя только одну ленту для записи всех элементов памяти и их содержимого – регистров, основной памяти, дисков и других запомиинающих устройств. Отсюда можно быть уверенным, что все, не выполнимое машиной Тьюринга, не может быть вычислено и компьютером. “

Машина Тьюринга - это совокупность следующих объектов

  • 1) внешний алфавит A={a 0 , a 1 , …, a n };
  • 2) внутренний алфавит Q={q 1 , q 2 ,…, q m } - множество состояний;
  • 3) множество управляющих символов {П, Л, С}
  • 4) бесконечная в обе стороны лента, разделённая на ячейки, в каждую из которых в любой дискретный момент времени может быть записан только один символ из алфавита А;
  • 5) управляющее устройство, способное находиться в одном из множества состояний

Символом пустой ячейки является буква внешнего алфавита а 0 .

Среди состояний выделяются начальное q 1 , находясь в котором машина начинает работать, и заключительное (или состояние остановки) q 0 , попав в которое машина останавливается.

Управляющее устройство может перемещаться влево и вправо по ленте, читать и записывать в ячейки ленты символы алфавита A. Управляющее устройство работает согласно командам, которые имеют следующий вид

q i a j > a p X q k

Запись означает следующее: если управляющее устройство находится в состоянии q i , а в обозреваемой ячейке записана буква a j , то (1) в ячейку вместо a j записывается a p , (2) машина переходит к обозрению следующей правой ячейки от той, которая обозревалась только что, если Х= П, или к обозрению следующей левой ячейки, если Х= Л, или же продолжает обозревать ту же ячейку ленты, если Х= С, (3) управляющее устройство переходит в состояние q k.

Поскольку работа машины, по условию, полностью определяется ее состоянием q, в данный момент и содержимым а обозреваемой в этот момент ячейки, то для каждой возможной конфигурации q i a j имеется ровно одно правило. Правил нет только для заключительного состояния, попав в которое машина останавливается. Поэтому программа машины Тьюринга с внешним алфавитом A={a0, a1, …, an} и внутренним Q={q1, q2,…, qm} содержит не более m (n+ 1) команд.

Словом в алфавите А или в алфавите Q, или в алфавите A Q называется любая последовательность букв соответствующего алфавита. Под k-ой конфигурацией будем понимать изображение ленты машины с информацией, сложившейся на ней к началу k-того шага (или слово в алфавите А, записанное на ленту к началу k-того шага), с указанием того, какая ячейка обозревается в этот шаг и в каком состоянии находится машина. Имеют смысл лишь конечные конфигурации, т.е. такие, в которых все ячейки ленты, за исключением, быть может, конечного числа, пусты. Конфигурация называется заключительной, если состояние, в котором при этом находится машина, заключительное.

Если выбрать какую-либо незаключительную конфигурацию машины Тьюринга в качестве исходной, то работа машины будет состоять в том, чтобы последовательно (шаг за шагом) преобразовывать исходную конфигурацию в соответствии с программой машины до тех пор, пока не будет достигнута заключительная конфигурация. После этого работа машины Тьюринга считается закончившейся, а результатом работы считается достигнутая заключительная конфигурация.

Будем говорить, что непустое слово б в алфавите А {а 0 } = {a 1 , …, a n } воспринимается машиной в стандартном положении, если оно записано в последовательных ячейках ленты, все другие ячейки пусты, и машина обозревает крайнюю слева или крайнюю справа ячейку из тех, в которых записано слово б. Стандартное положение называется начальным (заключительным), если машина, воспринимающая слово в стандартном положении, находится в начальном состоянии q 1 (соответственно в состоянии остановки q 0).

Если обработка слова б переводит машину Тьюринга в заключительное состояние, то говорят, что она применима к б, в противном случае - не применима к б (машина работает бесконечно)

Рассмотрим пример:

Дана машина Тьюринга с внешним алфавитом А = {0, 1} (здесь 0 - символ пустой ячейки), алфавитом внутренних состояний Q = {q 0 , q 1 , q 2 } и со следующей функциональной схемой (программой):

q 1 0 > 1 Л q 2 ;

q 1 1 > 0 С q 2 ;

q 2 0 > 0 П q 0 ;

q 2 1 > 1 С q 1 ;

Данную программу можно записать с помощью таблицы

На первом шаге действует команда: q 1 0 > 1 Л q 2 (управляющее устройство находится в состоянии q1, а в обозреваемой ячейке записана буква 0, в ячейку вместо 0 записывается 1, головка сдвигается влево, управляющее устройство переходит в состояние q2), в результате на машине создается следующая конфигурация:

Наконец, после выполнения команды q 2 0 > 0 П q 0 создается конфигурация

Эта конфигурация является заключительной, потому что машина оказалась в состоянии остановки q 0 .

Таким образом, исходное слово 110 переработано машиной в слово 101.

Полученную последовательность конфигураций можно записать более коротким способом (содержимое обозреваемой ячейки записано справа от состояния, в котором находится в данный момент машина):

11q 1 0 => 1 q 2 11 => 1q 1 11 => 1q 2 01 => 10q 0 1

Машина Тьюринга - не что иное, как некоторое правило (алгоритм) для преобразования слов алфавита A Q, т.е. конфигураций. Таким образом, для определения машины Тьюринга нужно задать ее внешний и внутренний алфавиты, программу и указать, какие из символов обозначают пустую ячейку и заключительное состояние.