Общее понятие о литосфере. Происхождение литосферы

Литосфера - это хрупкий, внешний, твердый слой Земли. Тектонические плиты являются сегментами литосферы. Ее верх легко увидеть - она находится на поверхности Земли, но основание литосферы расположено в переходном слое между земной корой и , который является областью активных исследований.

Сгибание литосферы

Литосфера не полностью жесткая, а обладает легкой эластичностью. Она прогибается, когда на нее воздействует дополнительная нагрузка или наоборот выгибается, если степень нагрузки ослабевает. Ледники - это один из видов нагрузки. Например, в Антарктиде толстая ледяная шапка сильно опустила литосферу к уровню моря. В то время как в Канаде и Скандинавии, где ледники растаяли около 10 000 лет назад, литосфера не испытывает сильного воздействия.

Вот некоторые другие типы нагрузки на литосферу:

  • Извержение вулканов;
  • Отложение осадков;
  • Повышение уровня моря;
  • Формирование крупных озер и водохранилищ.

Примеры снижения воздействия на литосферу:

  • Эрозия гор;
  • Образование каньонов и долин;
  • Высыхание крупных водоемов;
  • Снижение уровня моря.

Изгиб литосферы по приведенным выше причинам, как правило, относительно невелик (обычно значительно меньше километра, но измерим). Мы можем моделировать литосферу с помощью простой инженерной физики, и получить представление о ее толщине. Мы также способны изучить поведение сейсмических волн и поместить основание литосферы на глубины, где эти волны начинают замедляться, указывая на наличие более мягкой породы.

Эти модели предполагают, что толщина литосферы колеблется от менее 20 км вблизи срединно-океанических хребтов до примерно 50 км в старых океанических районах. Под континентами литосфера толще - от 100 до 350 км.

Эти же исследования показывают, что под литосферой находится более горячий и мягкий слой породы, называемый астеносферой. Порода астеносферы вязкая, а не жесткая и медленно деформируется под стрессом, как шпаклевка. Поэтому литосфера может двигаться через астеносферу под действием тектоники плит. Это также означает, что землетрясения образуют трещины, которые простираются только через литосферу, но не за ее пределы.

Структура литосферы

Литосфера включает в себя кору (горы континентов и океаническое дно) и самую верхнюю часть мантии под земной корой. Эти два слоя отличаются по минералогии, но очень похожи механически. По большей части они действуют как одна плита.

Похоже, что литосфера заканчивается там, где температура достигает определенного уровня, из-за которого средняя мантийная порода (перидотит) становится слишком мягкой. Но есть много осложнений и предположений, и можно только сказать, что эти температуры варьируются от 600º до 1200º С. Многое зависит от давления и температуры, а также изменения состава пород из-за тектонического смешивания. Вероятно, точно нельзя определить четкую нижнюю границу литосферы. Исследователи часто указывают термические, механические или химические свойства литосферы в своих работах.

Океаническая литосфера очень тонкая в расширяющихся центрах, где она образуется, но со временем становится толще. Когда она остывает, более горячая порода из астеносферы остывает на нижней стороне литосферы. В течение примерно 10 миллионов лет океаническая литосфера становится более плотной, чем астеносфера под ней. Поэтому большинство океанических пластин всегда готовы к субдукции.

Изгиб и разрушение литосферы

Силы, которые изгибают и ломают литосферу, происходят в основном от тектоники плит. Когда плиты сталкиваются, литосфера на одной плите погружается в горячую мантию. В этом процессе субдукции пластина изгибается вниз на 90 градусов. По мере того, как она изгибается и опускается, субдуктивная литосфера сильно трескается, вызывая землетрясения в нисходящей горной плите. В некоторых случаях (например, в северной Калифорнии) субдуктивная часть может полностью разрушаться, погружаясь глубоко внутрь Земли, поскольку плиты над ней меняют свою ориентацию. Даже на больших глубинах субдуктивная литосфера может быть хрупкой в ​​течение миллионов лет, если она относительно прохладная.

Континентальная литосфера может расщепляться, при этом нижняя часть разрушается и опускается. Этот процесс называется расслоением. Верхняя часть континентальной литосферы всегда менее плотная, чем мантийная часть, которая, в свою очередь, более плотная, чем астеносфера внизу. Силы тяжести или сопротивления из астеносферы могут вытягивать слои земной коры и мантии. Дезаминация позволяет горячей мантии подниматься и делать расплав под частями континентов, вызывая повсеместное поднятие и вулканизм. Такие места, как Калифорнийская Сьерра-Невада, Восточная Турция и части Китая, изучаются с учетом процесса расслоения.

Литосфера — это каменная оболочка Земли. От греческого «литос» — камень и «сфера» — шар

Литосфера - внешняя твердая оболочка Земли, которая включает всю земную кору с частью верхней мантии Земли и состоит из осадочных, изверженных и метаморфических пород. Нижняя граница литосферы нечеткая и определяется резким уменьшением вязкости пород, изменением скорости распространение сейсмических волн и увеличением электропроводности пород. Толщина литосферы на континентах и под океанами различается и составляет в среднем соответственно 25 - 200 и 5 - 100 км.

Рассмотрим в общем виде геологическое строение Земли. Третья за отдаленностью от Солнца планета - Земля имеет радиус 6370 км, среднюю плотность - 5,5 г/см3 и состоит из трех оболочек - коры , мантии и и. Мантия и ядро делятся на внутренние и внешние части.

Земная кора — тонкая верхняя оболочка Земли, которая имеет толщину на континентах 40-80 км, под океанами - 5-10 км и составляет всего около 1 % массы Земли. Восемь элементов - кислород, кремний, водород, алюминий, железо, магний, кальций, натрий - образовывают 99,5 % земной коры.

Согласно научным исследованиям, учёным удалось установить, что литосфера состоит из:

  • Кислорода – 49%;
  • Кремния – 26%;
  • Алюминия – 7%;
  • Железа – 5%;
  • Кальция – 4%
  • В состав литосферы входит немало минералов, самые распространённые – шпат и кварц.

На континентах кора трехслойная: осадочные породы укрывают гранитные, а гранитные залегают на базальтовых. Под океанами кора «океанического» , двухслойного типа; осадочные породы залегают просто на базальтах, гранитного пласта нет. Различают также переходный тип земной коры (островно-дуговые зоны на окраинах океанов и некоторые участки на материках, например Черное море) .

Наибольшую толщину земная кора имеет в горных районах (под Гималаями — свыше 75 км) , среднюю - в районах платформ (под Западно-Сибирской низиной - 35-40, в границах Русской платформы - 30-35), а наименьшую - в центральных районах океанов (5-7 км) . Преобладающая часть земной поверхности - это равнины континентов и океанического дна.

Континенты окружены шельфом- мелководной полосой глубиной до 200 г и средней шириной близко 80 км, которая после резкого обрывчастого изгиба дна переходит в континентальный склон (уклон изменяется от 15-17 до 20-30°). Склоны постепенно выравниваются и переходят в абиссальные равнины (глубины 3,7-6,0 км) . Наибольшие глубины (9-11 км) имеют океанические желоба, подавляющее большинство которых расположенная на северной и западной окраинах Тихого океана.

Основная часть литосферы состоит из изверженных магматических пород (95 %), среди которых на континентах преобладают граниты и гранитоиды, а в океанах-базальты.

Блоки литосферы - литосферные плиты - двигаются по относительно пластичной астеносфере. Изучению и описанию этих движений посвящен раздел геологии о тектонике плит.

Для обозначения внешней оболочки литосферы применялся ныне устаревший термин сиаль, происходящий от названия основных элементов горных пород Si (лат. Silicium - кремний) и Al (лат. Aluminium - алюминий).

Литосферные плиты

Стоит отметить, что самые крупные тектонические плиты очень хорошо различимы на карте и ими являются:

  • Тихоокеанская – самая большая плита планеты, вдоль границ которой происходят постоянные столкновения тектонических плит и образуются разломы – это является причиной её постоянного уменьшения;
  • Евразийская – покрывает почти всю территорию Евразии (кроме Индостана и Аравийского полуострова) и содержит наибольшую часть материковой коры;
  • Индо-Австралийская – в её состав входит австралийский континент и индийский субконтинент. Из-за постоянных столкновений с Евразийской плитой находится в процессе разлома;
  • Южно-Американская – состоит из южноамериканского материка и части Атлантического океана;
  • Северо-Американская – состоит из североамериканского континента, части северо-восточной Сибири, северо-западной части Атлантического и половины Северного Ледовитого океанов;
  • Африканская – состоит из африканского материка и океанической коры Атлантического и Индийского океанов. Интересно, что соседствующие с ней плиты движутся в противоположную от неё сторону, поэтому здесь находится наибольший разлом нашей планеты;
  • Антарктическая плита – состоит из материка Антарктида и близлежащей океанической коры. Из-за того, что плиту окружают срединно-океанические хребты, остальные материки от неё постоянно отодвигаются.

Движение тектонических плит в литосфере

Литосферные плиты, соединяясь и разъединяясь, всё время изменяют свои очертания. Это даёт возможность учёным выдвигать теорию о том, что около 200 млн. лет назад литосфера имела лишь Пангею - один-единственный континент, впоследствии расколовшийся на части, которые начали постепенно отодвигаться друг от друга на очень маленькой скорости (в среднем около семи сантиметров в год).

Это интересно! Существует предположение, что благодаря движению литосферы, через 250 млн. лет на нашей планете сформируется новый континент за счёт объединения движущихся материков.

Когда происходит столкновение океанической и континентальной плит, край океанической коры погружается под материковую, при этом с другой стороны океанической плиты её граница расходится с соседствующей с ней плитой. Граница, вдоль которой происходит движение литосфер, называется зоной субдукции, где выделяют верхние и погружающиеся края плиты. Интересно, что плита, погружаясь в мантию, начинает плавиться при сдавливании верхней части земной коры, в результате чего образуются горы, а если к тому же прорывается магма – то и вулканы.

В местах, где тектонические плиты соприкасаются друг с другом, расположены зоны максимальной вулканической и сейсмической активности: во время движения и столкновения литосферы, земная кора разрушается, а когда они расходятся, образуются разломы и впадины (литосфера и рельеф Земли связаны друг с другом). Это является причиной того, что вдоль краёв тектонических плит расположены наиболее крупные формы рельефа Земли – горные хребты с активными вулканами и глубоководные желоба.

Проблемы литосферы

Интенсивное развитие промышленности привело к тому, что человек и литосфера в последнее время стали чрезвычайно плохо уживаться друг с другом: загрязнение литосферы приобретает катастрофические масштабы. Произошло это вследствие возрастания промышленных отходов в совокупности с бытовым мусором и используемыми в сельском хозяйстве удобрениями и ядохимикатами, что негативно влияет на химический состав грунта и на живые организмы. Учёные подсчитали, что за год на одного человека припадает около одной тонны мусора, среди которых – 50 кг трудноразлагаемых отходов.

Сегодня загрязнение литосферы стало актуальной проблемой, поскольку природа не в состоянии справиться с ней самостоятельно: самоочищение земной коры происходит очень медленно, а потому вредные вещества постепенно накапливаются и со временем негативно воздействуют и на основного виновника возникшей проблемы – человека.

Введение

Актуальность проблемы. Актуальность экологического изучения литосферы обусловленная тем, что литосфера есть средой всех минеральных ресурсов, одним из основных объектов антропогенной деятельности (составных природной среды), через значительные изменения, которого развивается глобальный экологический кризис. В верхней части континентальной земной коры развиты грунты, значение которых для человека тяжело переоценить.

Задача: рассмотреть происхождение, строение литосферы

литосфера земной кора

Общее понятие о литосфере. Происхождение литосферы

Литосфера - это внешняя оболочка «твёрдой» Земли, расположенная ниже атмосферы и гидросферы над астеносферой. Мощность литосферы изменяется от 50 км (под океанами) до 100 км (под материками). В её составе - земная кора и субстрат, входящий в состав верхней мантии. Границей между земной корой и субстратом служит поверхность Мохоровичича, при пересечении которой сверху вниз скачкообразно увеличивается скорость продольных сейсмических волн. Литосфера не есть единое целое. Пространственное (горизонтальное) строение литосферы представлено её крупными блоками - так называемыми литосферными плитами, отделёнными друг от друга глубинными тектоническими разломами. Сейчас литосфера Земли состоит из семи больших плит и нескольких более мелких плит. Литосферные плиты скользят в определенных направлениях, наезжая при этом друг на друга.

В границах литосферы периодически происходили и происходят грозные экологические процессы (сдвиги, сели, обвалы, эрозия), которые имеют огромное значение для формирования экологических ситуаций в определенном регионе планеты, а иногда приводят к глобальным экологическим катастрофам.

Приблизительно 5,5 млрд. лет назад из холодного планетного вещества возникли первые планеты, в той числе и первичная Земля. В это время она была космическим телом, но еще не стала планетой, атмосферы и гидросферы тогда не существовало, поверхность планеты была совершенно безжизненна. Протоземля представляла собой холодное скопление космического вещества. Под влиянием гравитационного уплотнения, нагревания от беспрерывных ударов космических тел (комет и метеоритов) и выделении тепла радиоактивными элементами поверхность Протеземли стала нагреваться. Когда температура недр достигла уровня плавления окислов железа и других соединений, начались активные процессы формирования ядра и основных оболочек планеты.

Общим процессом формирования оболочек Земли, согласно гипотезе академика А.П. Виноградова, послужило зонное плавление в мантии, располагающейся вокруг ядра. При этом тугоплавкие и тяжелые элементы погружались вниз, образуя и наращивая ядро, а легкоплавкие и легкие по массе элементы поднимались вверх, образуя земную кору и литосферу.

ЛИТОСФЕРА – внешняя сфера «твердой» Земли, включающая земную кору и часть верхней мантии (рис. 1).

Толщина коры под континентами составляет, в среднем, 35–40 км. Там, где на суше расположены молодые высокие горы, она часто превышает 50 км (например, под Гималаями достигает 90 км). Под океанами кора более тонкая – в среднем около 7–10 км, а в некоторых районах Тихого океана – всего 5 км.

Границы земной коры определяются по скорости распространения сейсмических волн. Сейсмические волны дают информацию и о свойствах мантии. Установлено, что верхняя мантия состоит, главным образом, из силикатов магния и железа . Состав нижней мантии остается загадкой, однако высказывается предположение, что она содержит оксиды магния и кремния . Заключения о составе земного ядра были сделаны на основании не только анализа сейсмических волн, но и расчетов плотности и изучения состава метеоритов. Считается, что внутреннее ядро представляет собой твердый сплав железа и никеля . Внешнее ядро, по-видимому, жидкое и имеет несколько меньшую плотность. Некоторые специалисты считают, что оно содержит до 14% серы.

Земная кора, гидросфера и атмосфера образовались, в основном, в результате высвобождения веществ из верхней мантии молодой Земли. Сейчас время в срединных хребтах на дне океанов продолжается формирование океанической коры, сопровождающееся выделением газов и небольших количеств воды. По-видимому, и образование коры на молодой Земле было результатом подобных процессов, вследствие чего сформировалась тонкая оболочка, составляющая менее 0,0001% объема всей планеты. Состав этой оболочки, образующей континентальную и океаническую кору, изменялся во времени, прежде всего, за счет перехода элементов из мантии из-за частичного плавления на глубине примерно 100 км. Средний химический состав современной земной коры характеризуется большим содержанием кислорода, за которым следуют кремний и алюминий (рис. 2).

Средние значения относительного содержания химических элементов в верхнем слое земной коры по предложению советского геохимика А.Е.Ферсмана (1883–1945) называют кларками элементов в честь американского ученого Франка Уилгсуорта Кларка (1847–1931), который разработал методы количественной оценки распространенности химических элементов.

Анализ значений кларков позволяет понять многие закономерности распределения химических элементов. Кларки химических элементов земной коры различаются более чем на десять порядков. Так, если алюминия в земной коре содержится более восьми процентов по массе, то, например, золота 4,3·10 -7 %, меди – 5·10 -3 %, урана – 3·10 –4 %, а такого редкого металла, как рений – всего 7·10 –8 %.Элементы, содержащиеся в относительно большом количестве, образуют в природе многочисленные самостоятельные химические соединения, а элементы с малыми кларками рассеяны, преимущественно, среди химических соединений других элементов. Элементы, кларки которых меньше 0,01%, называют редкими.

Основными соединениями, образующими литосферу, являются диоксид кремния, силикаты и алюмосиликаты. Бóльшую часть литосферы составляют кристаллические вещества, образовавшиеся при охлаждении магмы – расплавленного вещества в глубинах Земли. При остывании магмы образовывались и горячие растворы. Проходя по трещинам в окружающих горных породах, они охлаждались и выделяли содержащиеся в них вещества.

Поскольку некоторые минералы стабильны только при определенных условиях, при изменении температуры и давления они распадаются. Например, ряд силикатов, образующихся глубоко в коре при высоких температуре и давлении, становятся неустойчивыми, когда попадают на поверхность Земли. С другой стороны, на большой глубине под действием внутреннего тепла Земли и повышенного давления многие горные породы меняют свой вид, образуя новые кристаллические формы.

Поверхность континентальной коры подвержена действию атмосферы и гидросферы, что выражается в процессах выветривания. Физическое выветривание является механическим процессом, в результате которого порода размельчается до частиц меньшего размера без существенных изменений в химическом составе. Химическое выветривание приводит к образованию новых веществ, оно происходит под действием влаги, особенно подкисленной, и некоторых газов (например, кислорода), разрушающих минералы.

Простейший процесс выветривания – это растворение минералов. Вода вызывает разрыв ионных связей, соединяющих, например, катионы натрия и хлорид ионы в галите NaCl. В этом процессе не участвуют катионы водорода, поэтому он не зависит от рН.

При разрушении веществ, содержащих элементы в низких степенях окисления, например, сульфидов, большую роль играет кислород. В эти процессы часто вовлечены микроорганизмы. Так, окисление пирита FeS 2 можно моделировать следующим рядом реакций. Сначала окисляется сера(–I):

2FeS 2 + 2H 2 O + 7O 2 = 4H + + 4SO 4 2– + 2Fe 2+

Затем следует окисление железа(II), катализируемое железоокисляющими бактериями:

4Fe 2+ + O 2 + 6H 2 O = 4FeO(OH) + 8H +

Образующийся гетит FeO(OH) покрывает дно ручьев в виде характерного желто-оранжевого налета.

Железоокисляющие бактерии извлекают энергию при окислении неорганических веществ, поэтому они развиваются там, где нет органических соединений, используя в качестве источника углерода СО 2 . Однако окисление железа – не очень эффективный способ выработки энергии: для получения 1 г клеточного углерода должно быть окислено примерно 220 г железа(II). В результате там, где живут железоокисляющие бактерии, образуются большие отложения соединений железа(III).

Выветривание карбонатных минералов, например CaCO 3 , происходит при взаимодействии с кислотами, содержащимися в воде за счет поглощения диоксида углерода, а также антропогенного диоксида серы. При этом поверхностные воды нейтрализуются и обогащаются гидрокарбонат-ионами:

CaCO 3 + H 2 CO 3 = Ca 2+ + 2HCO 3 –

Разрушение силикатов, например Mg 2 SiO 4 (форстерит) можно описать следующим уравнением:

Mg 2 SiO 4 + 4H 2 CO 3 = 2Mg 2+ + 4HCO 3 – + H 4 SiO 4

Реакция идет за счет образования чрезвычайно слабой ортокремниевой кислоты, при этом минерал со временем полностью растворяется. Однако при выветривании более сложных силикатов растворимыми оказываются не все продукты. В общем случае в результате выветривания образуются, в основном, кварц и глинистые минералы – водосодержащие слоистые алюмосиликаты. Например, при выветривании CaAl 2 Si 2 O 8 (анортит) твердым продуктом реакции является глинистый минерал каолинит:

CaAl 2 Si 2 O 8 + 2H 2 CO 3 + H 2 O = Ca 2+ + 2HCO 3 – + Al 2 Si 2 O 5 (OH) 4

На скорость выветривания влияет биосфера (где создается диоксид углерода), а также рельеф суши и климат, состав воды, тип материнской породы и кинетика реакций с участием отдельных минералов. Так, во влажных тропиках выветривание происходит быстрее. Это связано с тем, что высокие температуры ускоряют реакции, а постоянные ливни делают возможным быстрое вымывание и снос в моря и океаны даже практически нерастворимых соединений, например, оксидов алюминия и железа.

Продукты выветривания образуют рыхлые континентальные отложения, мощность которых меняется от 10–20 см на крутых склонах до десятков метров на равнинах и сотен метров – во впадинах. Средний минералогический состав рыхлого покрова суши заметно отличается от состава земной коры континентов (рис. 3).

На рыхлых покровных отложениях сформировались почвы, играющие важнейшую роль во взаимодействии живых организмов с земной корой. В почвах систематически консервируется значительная масса органического вещества, синтезированного высшими растениями. Окисление органического вещества в почвах катализируется ферментами микроорганизмов, при этом образуется диоксид углерода, который при взаимодействии с водой дает слабую угольную кислоту. Это может понизить рН почв до 4–5, что оказывает существенное влияние на процессы выветривания. Почва участвует в круговороте азота, серы и фосфора, а также многих металлов. Поэтому проблема охраны почв имеет большое значение.

На ранних этапах истории человечества деятельность людей почти не затрагивала глубины Земли. Однако с началом бурного развития промышленности резко возросли потребности человека в полезных ископаемых. Их добыча и переработка начали оказывать вредное воздействие на природу. При разработке открытых горных выработок образуется много пыли, загрязняющей окрестности. Огромные площади занимают отвалы «пустой» породы, образующиеся при добыче твердых полезных ископаемых. Откачка воды из горных выработок приводит к образованию подземных пустот. Многие горнодобывающие предприятия сбрасывают в реки недостаточно очищенные стоки, что ведет к загрязнению природных вод. В окружающую среду попадают вредные вещества из отвалов этих предприятий. Немало опасных веществ рассеивается при транспортировке руд и продуктов их переработки.

Загрязнение окружающей среды в результате добычи и переработки полезных ископаемых можно уменьшить, если использовать достижения науки и более совершенные технологии.

Елена Савинкина