Рихтовка валов в токарном станке. Правка коленчатого вала

На чтение 7 мин.

Торцевые уплотнения для насосов – это герметизирующие устройства, относящиеся к контактному типу уплотнений с парой трения поверхностей двух деталей. Одна деталь крепится на валу и является подвижной, другая неподвижная располагается в корпусе насоса. Трущаяся пара устройства работает в условиях перепадов давления с минимальным расходом смазывающего вещества. Смазкой в данных устройствах, зачастую, выступает уплотняемая среда.

По статистике торцевые уплотнения для всякого насоса считаются самым уязвимым узлом среди всех конструктивных элементов насоса.

Конструкция торцевого уплотнения для насосов

Стандартная конструкция устройства состоит из 9 базовых элементов:

  • болт установочный для закрепления уплотнения на валу рабочего колеса;
  • уплотнитель из эластомера;
  • штифт, передающий на подвижное кольцо вращение вала;
  • кольцо подвижное;
  • кольцо неподвижное;
  • задняя стенка корпуса насоса;
  • штифт, предотвращающий вращение неподвижного кольца;
  • вал водяного насоса рабочего колеса;
  • пружины или сильфон, обеспечивающие плотность прилегания подвижного и неподвижного колец.

Торцевые уплотнения для насосов (видео)

Принцип работы торцевого уплотнения насоса

В общих случаях торцевое уплотнение вала насоса имеет два кольца:

  • неподвижное кольцо, расположенное в корпусе;
  • подвижное кольцо, располагающееся на валу агрегата.

Одно из колец может аксиально перемещаться, благодаря наличию упругого поджимающего элемента (пружины, сильфона, мембраны). Этот элемент вместе с нажимной втулкой и подвижным кольцом образуют аксиально-подвижный блок или поджимной узел. Они обеспечивают контакт торцевых поверхностей в сопряжении подвижного и неподвижного колец пары без поджимающей силы давления среды.

Обязательными деталями устройства торцевого уплотнения являются вторичные (вспомогательные) уплотнения между ротором и вращающимся блоком, между корпусом и статорным блоком. В конструкцию входят элементы фиксации уплотняющих колец (приводные штифты, установочные винты), которые осуществляют привод подвижного кольца и предотвращают проворот (угловое смещение) неподвижного кольца относительно корпуса.

Разновидности уплотнений торцевых для насосов

Деление уплотнительных торцевых устройств на разные типы происходит по следующим критериям.

  1. По конструкции бывают:
  • одинарные;
  • двойное торцевое уплотнение валов насосов;
  • комбинированные.
  1. По расположению в оборудовании:
  • с внутренним расположением;
  • с наружным расположением.


  1. По конструктивному исполнению:
  • обычные, по евростандарту EN 12756 (DIN 24960);
  • специальные, могут соответствовать евростандарту;
  • картриджные (патронные), могут соответствовать евростандарту.
  1. По коэффициенту гидравлической нагрузки:
  • гидравлически нагруженные;
  • гидравлически разгруженные.
  1. По используемым материалам:
  • со стандартными (штатными) материалами;
  • со специальными материалами (для работы в особых условиях).

Группы торцевых уплотнений по нагруженности

Степень нагрузки на торцевые уплотнения различается и зависит от условий работы: давления и частоты вращения вала. С целью оценки условий нагруженности устройства в уплотняющем стыке во время работы существуют отдельные рекомендации.

Для общей характеристики степени тяжести условий работы уплотнений, используют произведение двух показателей: скорости V скольжения в паре трения и перепада давления P в устройстве.


Значения показателей P,V и P хV для различных уплотнений подразделяют по степени их нагруженности на 4 группы:

  • низшую, где P до 0,1 МПа, V до 10 м/с, P хV до 1,0 МПа х м/с;
  • среднюю, где P до 1,0 МПа, V до 10 м/с, P хV до 5,0 МПа х м/с;
  • высокую, где P до 5,0 МПа, V до 20 м/с, P хV до 50,0 МПа х м/с;
  • высшую, где P более 5,0 МПа, V более 20 м/с, P хV более 50,0 МПа х м/с.

Способы правки искривлений вала насоса

В процессе эксплуатации насосов, под воздействием повышенных нагрузок может происходить кривизна вала. Искривленный вал агрегата подлежит восстановлению различными методами правки. Используются такие способы правки вала:

  • наклеп;
  • термомеханический;
  • термический;
  • релаксации напряжений.

Все перечисленные способы правки вала, за исключением наклепа, связаны с его нагреванием. Такие показатели, как значение прогиба, длина, диаметр и материал вала являются определяющими в выборе способа его правки.

Виды уплотнений в центробежных насосах

Основным условием устойчивой работы центробежного агрегата является конструкция его уплотнения. Агрегаты отличаются размерами, характеристиками, предназначением, перекачиваемыми средами.


Исходя из этих параметров, подбирается оптимальный вид уплотнения вала помпы. Виды уплотнений вала бывают следующими:

  • сальниковые одинарные и двойные;
  • торцовые одинарные и двойные;
  • манжетные;
  • щелевые (лабиринтные).

Одинарное уплотнение торцовое насоса

Применяется в помпах, перекачивающих растворы, утечка и попадание которых во внешнюю среду недопустимо в больших количествах. К таким жидкостям относятся: горячие, легкокипящие, агрессивные, неорганические и органические.

Такой вид уплотнения требует повышенной точности монтажа блока установки и высокого качества поверхности вала. При обработке трущихся поверхностей допуск на осевое биение минимальный. Проводится и последующая тонкая шлифовка. Утечка жидкости при таком одинарном устройстве незначительна.

Насосы с двойным торцевым уплотнением

Такое устройство отличается от устройства одинарного количеством уплотняющих притертых поверхностей. Устройство дополнено системой подвода затворной жидкости, которая препятствует попаданию во внешнюю среду рабочей жидкости. В роли затворной жидкости выступает вода, глицерин и прочие жидкости, не взаимодействующие с перекачиваемой средой.

Есть два варианта размещения сдвоенных уплотнений:

  • спина к спине;
  • тандем.

Первый вариант применяется чаще. В данном случае давление затворной жидкости превышает на 1-2 бара давление перекачиваемой жидкости. Это достигается за счет использования дозировочного насоса, специального сосуда или гидроусилителя. Преимущество такого варианта в том, что зазор между подвижным и неподвижным кольцами заполнен затворной жидкостью, которая препятствует проникновению твердых частиц и грязи из перекачиваемой среды. Это существенно увеличивает срок эксплуатации устройства, в сравнении с вариантом Тандем.


В варианте Тандем затворная жидкость обладает меньшим давлением, чем перекачиваемая. При разгерметизации устройства, именно перекачиваемая жидкость попадает в затворную. Это важно там, где недопустимо проникновение посторонней жидкости в напорную линию. В данном варианте нет надобности осуществлять серьезный контроль за давлением затворной жидкости, что в определенных ситуациях существенно.

Материал для торцевых уплотнений на насосы

В выборе торцевого устройства определяющим является подбор материала для пары трения и вторичных уплотнений. Данные элементы изготавливаются из различных материалов.

Для пары трения используют следующие материалы:

  • металл (нержавеющая сталь) – SUS;
  • графит – CAR;
  • керамика – CER;
  • карбид кремния – SIC;
  • карбид вольфрама – TC.

Вторичные уплотнения изготовляют из материалов, имеющих различную температуростойкость:

  • нитрил-бутадиеновый каучук (NBR), от -20 до +120 градусов;
  • этилен-пропиленовый каучук (EPDM), от -30 до +170 градусов;
  • фторкаучук (Viton), от -30 до +185 градусов;
  • фторопласт (PTFE), от -260 до +260 градусов.

Торцевые уплотнения для насосов разных производителей

Для насосов выпускаемых различными производителями существует своя маркировка. Все уплотнительные устройства изготовляются из современных материалов с продолжительным сроком эксплуатации.


Приведем некоторый перечень популярных насосов и торцевых уплотнений к ним:

  • к помпам APV – торцы: SNAPV(W+), SNAPV1(W), SNAPV2(W), SNAPV(DW), SNAPV 3, SNAPV 4, SNAPV 5, SNAPV 6, SNAPV 7, SNAPV 8, SNAPV 9, SNAPV 10, SNAPV 11, SNAPV 12, SNAPV 13;
  • к помпам Allweiler – торцы: SNAR, SNM 3, SNAL 1;
  • к помпам Lowara – торцы: SNAR, SNM 3, SNLW;
  • к насосам Inoxpa – торцы: SNIXP 1, SNIXP 2, SNIXP 3, SNIXP 4, SNM 3, SNFN, SNMG, SN 2100, SNAR;
  • к насосам EMU – торцы: SNMG, SNEMU 1, SNEMU 2;
  • к помпам Hilge – торцы: SNFN, SNAR, SNM 3, SNHG, SNBT;
  • к помпам Johnson – торцы: SNJH 1, SNJH 2, SNJH 3, SNJH 4;
  • к помпам Calpeda – SNMG, SNFN, SNAR, SNM 3, SN 2100.

Отдельные производители насосов применяют торцевые уплотнительные устройства собственного производства, другие используют устройства, выпускаемые специализирующимися на их производстве компаниями.

Перед шлифованием шеек коленчатый вал подвергают правке.

Чтобы установить величину и направление прогиба, деталь укладывают на призмы пресса на вторую и восьмую коренные шейки и с помощью индикатора измеряют биение коренных шеек. Величину и направление прогиба вала отмечают мелом на щеках вала.

Искривления коленчатых валов вызываются остаточными напряжениями в металле из-за:

  1. холодной правки под прессом;
  2. поверхностной термической обработки и
  3. механической обработки со снятием неравномерных припусков.

При эксплуатации вала остаточные напряжения под действием переменных нагрузок снижаются. Изменение распределения напряжений может также вызвать деформации вала.

В результате правки коленчатых валов при ремонте обеспечивается:

  1. увеличение числа ремонтов и общий срок службы вала, так как при шлифовании правленого вала снимается минимальный слой металла;
  2. уменьшение трудоемкости механической обработки вала и расходования абразивных кругов.

На ремонтных предприятиях применяют два способа правки коленчатых валов :

  1. внешним статическим усилием под прессом и
  2. местным наклепом щек.

Основной недостаток правки коленчатых валов под прессом следующий. Под действием изгибающей силы, приложенной к одной шейке, происходит местная пластическая деформация в наиболее податливом месте и сосредоточение остаточных напряжений у галтелей; это вызывает снижение усталостной прочности. Поэтому этот способ правки применяют лишь при значительном прогибе коленчатых валов, имеющих достаточный запас прочности; коленчатые валы с малым прогибом править под прессом не рекомендуется.

Коленчатые валы дизелей типа B2-300 и Д6, имеющие прогиб более 0,3 мм, правят под прессом по схеме, показанной на рис. 108 .

В том случае, если прогиб коренных шеек вала расположен в одном направлении и имеет наибольшее значение у четвертой (IV) или пятой (V) коренных шеек, вал устанавливают на призмы второй (II) и восьмой (VIII) опоры (рис. 108, а ) и правят, прилагая нагрузку к пятой (V) шейке. Призмы сделаны разъемными. Подставка призмы имеет широкую опорную площадку и боковые щеки. В отверстие одной из них ввернут фиксатор, входящий в гнездо бруса пресса.

Верхняя часть призмы представляет собой отдельную деталь и может наклоняться относительно нижней подставки на небольшой угол до выбора зазора между ними с одной из сторон. При такой конструкции призма разгружается от горизонтальной составляющей усилия, возникающего при правке вала.

Вал нагружают таким образом, чтобы oн прогнулся в обратном направлении на 3 мм. После снятия нагрузки вновь проверяют индикатором биение всех шеек вала. В случае надобности деталь правят повторно, увеличивая упругий прогиб до 5 мм.

Ввиду упругости вала величину обратного прогиба принимают в 10-15 раз больше устраняемого. Под нагрузкой пресса вал выдерживают 1-2 мин.

После правки вал подвергают магнитному контролю на отсутствие трещин.

Для уменьшения изменения формы правленого вала в процессе эксплуатации и при хранении прибегают к следующим мероприятиям:

  1. детали выдерживают для обеспечения естественного старения;
  2. при правке вала применяют небольшой обратный компенсирующий прогиб;
  3. применяют низкотемпературный отпуск.

Когда величина прогиба уменьшается до 0,3 мм, окончательную правку выполняют методом наклепа щек. Наклон производят по щекам в местах, показанных на рис. 109 .

Рис. 109. Схема правки выа методом наклепа щек: а-б, c-d - оси шеек до правки; a"-b", с"-d" - оси шеек после правки.

При наклепе щек используют специальную угловую надставку к пневматическому молотку (рис. 110 ). Разрезной корпус 1 зажимают винтами на шейке молотка. Его ударник действует на боек 3, посаженный на ось 2. Конец молотка свободно входит между щеками вала. Боковой выступ бойка ударяет по щеке вала.

При правке наклепом деформация вала происходит не в зоне концентрации рабочих напряжений. После правки усталостная прочность валов почти не изменяется. Вследствие весьма малых деформаций щек в детали наблюдаются незначительные смещения, и поэтому повышается точность правки.

Кроме того, обеспечивается большая устойчивость полученной правкой формы оси вала. Необходимая остаточная деформация для устранения биения вала может быть получена суммированием деформаций, вызванных наклепом на нескольких щеках. Oсь вала получается плавная, без изломов.

Рис. 110. Надставка к пневматическому молотку для правки коленчатого вала.

Коленчатые валы с пространственно изогнутой осью (с биением в нескольких плоскостях) подразделяют на две группы:

Первая группа - плоскости кривизны в отдельных шейках смещены одна относительно другой на угол не более 45°. Правку таких валов производят в средней плоскости, в сечении с наибольшим биением.

Вторая группа - плоскости кривизны смещены одна относительно другой на угол более 45°. Правку валов этой группы производят последовательно в обеих плоскостях искривления, начиная с большей величины искривления.

После правки биение коренных шеек и шеек носка вала должно быть не более 0,1 мм и биение хвостовика - до 0,08 мм.

Ремонт валов и осей

Характерными дефектами валов и осей, возникающими в процессе эксплуатации, являются прогиб, скручивание, изломы, образование забоин и трещин, износ шеек (цапф), износ или повреждение шпоночных канавок, шлицов, повреждение и износ резьбы.

При наличии погнутости вала (оси) и других дефектов в первую очередь устраняют прогиб.

Величину прогиба вала или оси устанавливают на токарном станке или на подшипниках, затем индикатором измеряют биение на различных участках, отмечая мелом места, которые дают наибольшее биение и потому требуют правки.

Более простой способ определения изгиба - при помощи стальной линейки. Ее прикладывают ребром по оси вала и щупом замеряют величину просвета на данном участке, соответствующую прогибу вала.

Допустимый прогиб валов при частоте вращения свыше 500 об/мин составляет 0,15 мм на 1 м, но не более 0,30 мм на всю длину вала; при частоте вращения менее 500 об/мин - 0,10 мм на 1 м, но не более 0,20 мм на всю длину вала.

Прогиб вала и осей величиной менее 0,5 мм устраняют шлифованием, а выше 0,5 мм - холодной правкой или правкой с нагреванием.

Холодную правку валов (осей) проводят несколькими способами: чеканкой, винтовыми приспособлениями и прессами.

При холодной правке чеканкой (рис. 23.1, а) вал 1 устанавливают на двух опорах вогнутой стороной вверх. Под место наибольшего прогиба устанавливают подкладку 6 из мягкой меди или дерева твердой породы.

Рис. 23.1. Правка вала:

а - холодная правка чеканкой; б - порядок ударов; в - правка с нагревом; 1 - вал; 2 - место наибольшего прогиба; 3 - индикатор; 4 - место наклепа; 5 - хомут; 6 - подкладки; 7 - опоры

Около места наклепа 4 закрепляют вал скобой или хомутом 5, оставляя на весу наибольшую часть вала (0,6-0,8) * l . Это необходимо для того, чтобы масса вала способствовала вытяжке вогнутых волокон. Для этого же на длинном конце вала проводят дополнительно равномерный нажим.

Наклепывание (чеканку) проводят над подкладкой 6, осторожно, ударяя молотком массой 1-2 кг по специальному медному или латунному чекану, пригнанному по форме вала (рис. 23.1, б).

По мере чеканки индикатором 3 измеряют стрелу прогиба вала.

При диаметре валов менее 60 мм их правят при помощи винтового пресса. Головка винта должна быть установлена над выпуклым местом вала и давить на него через медную или латунную прокладку. Одновременно следует постукивать по поверхности вала свинцовой или медной кувалдой или обыкновенным молотком по медной подкладке.

Правку с нагревом применяют для валов диаметром более 80 мм, а также при изгибах валов, достигающих нескольких миллиметров (рис. 23.1, в).

Вал 1 устанавливают на двух опорах 4 выпуклой стороной вверх. Затем нагревают газопламенной горелкой в месте наибольшего прогиба 2, отмеченном индикатором. Для этого вал обертывают с обеих сторон от места нагрева мокрым листовым асбестом, закрепляют его проволокой, оставляя открытым участок непосредственного нагрева. При этом принимают размеры открытого участка вала по длине 0,1-0,2 d, а по окружности - 1/3 d (где d - диаметр вала). Прогревание длится 3-5 мин при температуре пламени 500-550 °C. Температуру нагрева контролируют термопарой или по цвету побежалости стали (темно-бурый цвет каления). Нагретый участок быстро охлаждают сжатым воздухом. Операцию повторяют несколько раз. Вал выравнивается под воздействием внутренних напряжений, возникающих при местном нагреве и охлаждении. Таким способом можно править валы, изгиб которых достигает нескольких миллиметров, с точностью до 0,03-0,05 мм.

Прогиб вала проверяют индикатором 3 до начала и после прогрева, который повторяют, если вал не выпрямится от одного нагрева.

Устранение скрученности . Скрученные валы, как правило, выбраковывают. При скрученности валов Ø 50-60 мм до 10° ее устраняют рычажным захватом, а особо тонких валов или осей - зажимая один конец вала (оси) в тисках и поворачивая другой конец воротком в необходимую сторону. При этом подкладывают медные или свинцовые прокладки.

Угол скручивания (смещения) определяют замером линейкой с угломером или рейсмусом.

Заварка трещин . Валы, имеющие сквозные изломы или поперечные трещины глубиной до 0,10 диаметра вала, как правило, заменяют новыми.

Валы и оси, имеющие отдельные поперечные трещины глубиной до 0,10 диаметра вала и продольные трещины глубиной не более 0,15 диаметра вала, длиной не более 10 % от длины вала и не воспринимающие ударной нагрузки, могут быть отремонтированы электросваркой. При этом необходимо предварительно разделать все трещины до здорового места и снять фаски по 10-12 мм на сторону. Валы малых диаметров перед сваркой подогревают. После сварки правят, обтачивают и шлифуют.

Ремонт шеек валов . Поверхностные повреждения цапф (царапины, риски, заусенцы, неглубокие задиры), а также незначительные овальность, конусность или эллипсность шеек (не более 0,2 мм) устраняют вручную бархатным напильником с последующим полированием тонким наждачным полотном или специальными полировочными жимками. Жимок представляет собой две колодки, наложенные одна на другую, с отверстиями определенного диаметра. Внутренние стенки отверстия обтянуты кожей. При износах свыше 0,2 мм шейки перетачивают на токарном станке, а затем шлифуют под ремонтный размер.

Переточку выполняют в два или три перехода: первый - грубая обработка острым обдирным резцом; второй - обточка чистовым резцом; третий - отделка широким резцом.

Во избежание перенапряжения валов при относительно небольших выработках шеек рекомендуется ремонтировать их металлизацией. Допускается наращивание поверхности шеек хромированием и осталиванием.

При изменении диаметра шейки свыше 10 % переточка ее не допускается. В этом случае ремонт выполняют электронаплавкой с последующей проточкой до номинального диаметра.

Для того чтобы получить хорошую поверхность восстанавливаемой шейки и прочный слой наплавляемого металла, необходимо изношенную часть шейки проточить на 1,0-1,5 мм от номинального размера шейки, а после этого наплавить металл в определенном порядке. Наплавку металла на шейки цапф можно делать вдоль оси шейки или по окружности.

В первом случае (рис. 23.2, а) каждый следующий валик наплавляемого металла должен перекрывать на 1/3 по ширине предыдущий (соседний с ним) и заканчиваться на противоположной по диаметру стороне шейки (на рис. 23.2, а последовательность наложения валиков указана цифрами). Это делают для того, чтобы наплавляемую шейку не повело.

Рис. 23.2. Электронаплавка шейки вала: а - вдоль оси шейки; б - по окружности

Во втором случае (рис. 23.2, б) также остается в силе условие перекрытия на 1/3 каждым валиком ранее наплавленного валика.

После проверки отсутствия искривления шейки при наварке ее протачивают. В тех случаях, когда наплавку сделать трудно, шейки вала ремонтируют установкой ремонтных втулок. При этом способе ремонта отожженный вал обтачивают и напрессовывают втулку из того же материала, раскернивают ее по торцу или приваривают точечной сваркой. Втулку можно ставить на эпоксидном клее, обработав затем шейку до нужного размера.

Восстановление центровых отверстий . Проверку и восстановление центровых отверстий валов проводят на токарных станках. Для этого ремонтируемый вал устанавливают одним концом в самоцентрирующий патрон, а второй конец шейкой вала кладут на кулачки неподвижного люнета. Регулировкой кулачков люнета добиваются того, чтобы индикатор показывал биение на шейке вала не более половины допуска на изготовление.

После выверки вала проводят правку центров центровым сверлом, специальным резцом или шабером. Центр второго конца вала исправляют так же, как и первого. Качество правки центров проверяют на том же токарном станке, но вал устанавливают в центре, а контролируют шейки вала по индикатору.

Ремонт шпоночной канавки и шлицов . Сначала проверяют канавки (штихмасом, штангенциркулем и угольником). Если повреждения канавок не превышают 5 % от их ширины, то канавки ремонтируют напильником и шабером. При более значительных повреждениях, требующих расширения канавки от 5-15 %, ремонт выполняют прострожкой и фрезерованием канавки на станках и тем самым придают ей ремонтный размер, соответственно, изменяя при этом размер шпонки (допускается применение ступенчатой шпонки). Ремонтный размер паза не должен превышать номинальный более чем на 15 %. Шпоночные пазы, изношенные более чем на 15 %, восстанавливают под номинальный размер наплавкой вручную одной из стенок паза с последующей механической обработкой. Практикуется изготовление нового шпоночного паза под углом 120-180° по отношению к изношенному. При этом изношенный паз заваривают. Для неответственных соединений допускается наплавка изношенного паза с последующей обработкой (на прежнем месте).

Шлицевые соединения ремонтируют наплавкой шлицев с последующим отжигом, механической и термической обработкой. При небольших износах зубилом надрубают канавку вдоль шлица, при этом шлиц раздается по ширине. Полученную канавку заделывают наплавкой и обрабатывают.

Правка металла – операция, при помощи которой устраняют неровности, кривизну или другие недостатки формы заготовок. Правка металла – это выправление металла действием давления на какую-либо его часть независимо от того, производится это давление прессом или ударами молотка (рихтовка). Правка применяется при искажении формы деталей, например при изгибе, и скручивании валов, осей, шатунов, рам; при вмятинах и перекосах тонкостенных деталей. В зависимости от степени деформации и размеров детали правят с нагревом или без него. Правят стальные листы, листы из цветных металлов и их сплавов, стальные полосы, прутковый материал, трубы, проволоку, стальной квадрат, круг стальной, а также металлические сварные конструкции. Металл правят как в холодном, так и в нагретом состоянии. Правка играет большую роль в восстановлении негодных деталей оборудования. Правильно примененная правка может полностью восстановить деталь, вернув ей первоначальные качества. Правка может осуществляться в холодном состоянии, с подогревом и путем термического воздействия. Обработка металлов давлением при температуре ниже температуры рекристаллизации называется холодной обработкой, а при более высокой температуре – горячей обработкой.

Правка холодным методом основана на механическом воздействии, вызывающем пластические деформации металла. Правку деталей из листового проката выполняют холодным методом вручную или на машинах. При ручной правке металлический лист проколачивают на ровной плите или наковальнях с помощью ручного инструмента или пневматического молотка со специальным зубилом. Машинную правку листовых деталей осуществляют прокаткой и растяжением. Правку прокаткой выполняют на валковых листоправильных машинах (рис. 1). Правку растяжением выполняют на растяжных правильных машинах, состоящих из стола-рольганга и гидравлического цилиндра двустороннего действия с подвижными зажимами, в которых зажимают листовую деталь. С повышением давления в гидравлическом цилиндре зажимы раздвигаются и создают в укороченных волокнах закрепленного листа растягивающие напряжения, достигающие предела текучести материала. В результате пластического растяжения укороченных волокон материала листовая деталь выпрямляется. В отдельных случаях правку листовых деталей выполняют поперечным изгибом на гидравлическом прессе последовательным нажимом пуансона. Сварные полотнища, получившие деформации от усадки сварных швов, правят аналогично деталям из листового проката.

Рис. 1.

Правку деталей из профильного проката осуществляют холодным методом – вальцеванием на роликовых машинах, растяжением на растяжных машинах, а также поперечным изгибом на горизонтально-гибочных и гидравлических прессах. Правку сварных тавровых балок, рам, имеющих недопустимые сварочные деформации, выполняют холодным методом аналогично правке деталей профильного проката, а также тепловым методом.

Холодная правка ряда деталей является трудоемкой операцией, в процессе которой необходим контроль эффективности ее применения. Поэтому помимо обычного оборудования и контрольного инструмента (гидравлические прессы, индикаторы) все большее применение находят специальные стенды и приспособления, позволяющие осуществлять правку и комплексную проверку детали в процессе ее применения.

Холодная правка не влияет на структуру металла, так как на самом деле способствует снижению внутреннего напряжения материала. Это значительно отличает ее от горячих методов правки, когда материал подвергают нагреву до температур структурного превращения металла и таким образом наносят ему ущерб. Однако при правке без нагрева у стальных деталей остаются значительные внутренние напряжения. В результате после правки они постепенно принимают первоначальную форму. Для снятия внутренних напряжений после холодной правки деталь необходимо стабилизировать, т. е. выдержать при температуре 400…450 °С около 1 часа или при температуре 250…300 °С в течение нескольких часов.

Недостатки механической холодной правки: опасность обратного действия, снижение усталостной прочности и несущей способности детали. Опасность обратного действия вызвана возникновением неуравновешенных внутренних напряжений, которые с течением времени, уравновешиваясь, приводят к объемной деформации детали. Ухудшение усталостной прочности деталей происходит за счет образования в ее поверхностных слоях мест с растягивающими напряжениями, причем снижение усталостной прочности достигает 15…40 %.

Для повышения качества холодной правки применяют следующие способы: выдерживание детали под прессом в течение длительного времени; двойная правка детали, заключающаяся в первоначальном перегибе детали с последующей правкой в обратную сторону; стабилизация правки детали последующей термообработкой. Последний способ дает лучшие результаты, но при нагреве может возникнуть опасность нарушения термической обработки детали, кроме того, он дороже первых двух.

Холодная правка валов

При эксплуатации машин у валов возникают дефекты: изгиб; износ рабочих поверхностей; повреждение резьбы, шпоночных канавок и шлицев. Изгиб валов определяют в центрах токарного станка, специальных приспособлений или на призмах с использованием стоек с индикаторами (рис. 2).

Рис. 2.

Изгиб валов устраняют правкой: холодной или горячей. Холодную правку выполняют под прессом. Следует иметь в виду, что при холодной правке в результате появления наклепа в металле возникают внутренние напряжения, величина которых тем выше, чем больше величина деформации при правке. Кроме того, при холодной правке не всегда сохраняется требуемая форма вала (валы могут вновь принимать свою искаженную форму). Поэтому рекомендуется после холодной правки нагреть валы до 400…450 °С, выдержать 1 час и медленно охладить.

Правка по методу Буравцева . Его назвали «поэлементной холодной правкой». В процессе правки по методу Буравцева также используется пресс (рис. 3). Ноу-хау заключается в специальном приспособлении, с помощью которого поверхностный слой шейки вала пластически деформируется так, что в нем вместо обычных напряжений растяжения создаются напряжения сжатия. Галтель при этом не затрагивается, а значит, усталостная прочность коленчатого вала после правки не только не уменьшается, но даже возрастает. Более того, избавившись от недостатков ранее известных способов, поэлементная холодная правка позволяет восстановить любые коленчатые валы (и чугунные, и стальные) любых двигателей (от мотоциклов до экскаваторов), имеющих практически любой прогиб. При этом точность правки очень высока. Например, удается обеспечить взаимное биение коренных шеек 0,01 мм при исходном биении свыше 1 мм.

Рис. 3.

За годы использования способа поэлементной правки на практике накоплен фактический материал о дальнейшей «судьбе» выправленных коленчатых валов как отечественных автомобилей, так и иномарок, включая грузовики и автобусы. Статистика показала, что эти коленчатые валы не возвращаются в изогнутое состояние со временем. Не было и рекламаций, связанных с поломкой валов, что косвенно свидетельствует об их высокой усталостной прочности.

Правка валов наклёпом . Способ целесообразен для правки коленчатых валов, биение которых не превышает 0,03…0,05 % от длины вала. Он производится наклепом щек пневматическим молотком со специальной головкой. Коленчатый вал укладывается на призмы верхними коренными шейками или устанавливается в центрах. Продолжительность правки и глубина наклепа (деформации щеки) зависят от силы и числа ударов в единицу времени. По одному и тому же месту не рекомендуют делать более трех-четырех ударов; контроль эффективности правки осуществляют измерением биения вала. Наклепу подлежат внутренняя и наружная стороны щеки (со стороны шатунной шейки) в зависимости от направления биения вала. Правка наклепом щек коленчатого вала не снижает его усталостной прочности.

Горячая правка металла

Этот метод правки является универсальным. Он осуществляется с помощью обычных средств нагрева и применяется для выправления деталей различной конфигурации с большой степенью точности. Одно из преимуществ метода в том, что он позволяет править литые детали из чугуна, которые иначе выправить почти невозможно. При необходимости процесс можно вести так, что исправление оси детали происходит замедленно и измеряется десятыми и сотыми долями миллиметра. Термическим воздействием можно производить правку деталей большого сечения, что особенно ценно при отсутствии на предприятии достаточно мощного прессового оборудования.

При горячей правке выравнивание получается в результате создания напряжений усадки. Это явление объясняется тем, что нагретая часть благодаря увеличению температуры старается расшириться, а окружающая ее область противодействует этому. При этом нагретая часть металла пластически деформируется. После осадки неровности нагретая часть охлаждается и создаваемые напряжения растяжения способствуют выравниванию металла. Правка тем эффективнее, чем быстрее происходит процесс нагревания и охлаждения и чем ýже нагреваемая полоса. В то же время слишком узкая полоса нагревания вызывает трещины в материале.

Деталь типа вала или оси круглого сечения или балки прямоугольного сечения, подвергаемая правке, укладывается на две опоры или ставится в центры выпуклостью кверху. Под точку наибольшей вогнутости ставится индикатор, по показаниям которого контролируют ход процесса. Нагрев ведут обычно сварочной горелкой (мощность ее подбирают в зависимости от сечения детали), место наивысшего перегиба ограничивают накладками. Если одноразового нагрева оказывается недостаточно для получения заданной прямолинейности, операцию повторяют, прогревая зону, расположенную рядом с первоначальной. Дважды греть одно и то же место не рекомендуется. Например, требуется выправить шпиндель фрезерного станка, который изогнут до величины прогиба 0,2 мм. Правка ведется на токарном станке. Исправляемый шпиндель закрепляется в патроне и люнете. Для правки деталь нагревают в точке наибольшей выпуклости с последующим охлаждением проточной водой. Место нагрева ограничивается специальным щитком из листового асбеста, смоченного водой. Нагревом с последующим охлаждением ось шпинделя может быть выправлена до прямолинейности 0,01…0,02 мм.

Детали из листовой стали правят по такому же методу, укладывая их для удобства на плиту (рис. 2.4). По прилеганию детали к плите определяют ход процесса правки. Нагрев ведут до температуры 800…900 °С, но не выше 1000 °С. Температуру нагрева можно определить по вишнево-красному цвету детали. Охлаждение можно интенсифицировать путем обдувания нагретой зоны сжатым воздухом или смачиванием водой. Момент начала охлаждения нужно выбирать такой, чтобы не закалить деталь.

Рис. 4. Термическая правка листовой стали

Хорошие результаты дает правка термическим воздействием изогнувшихся столов фрезерных, продольно-строгальных, шлифовальных и других станков. Для правки стол укладывают на плиту вниз направляющими. На рабочей поверхности стола наносят мелом черту поперек стола против места наибольшей выпуклости и нагревают полосу вдоль нанесенной черты. Если эта операция производится на плите, то результаты правки контролируются по зазору между направляющими стола и плитой, а также при помощи индикатора.

Термомеханический метод правки . Он отличается от термического тем, что до начала нагрева участка вала, установленного выпуклой стороной вверх, в нем заранее создаются упругие напряжения с помощью механического нажима, например хомутом. Нажимное устройство устанавливается вблизи от места нагрева, рядом с точкой наибольшего прогиба. Перед началом нагрева этим устройством прогибают вал в противоположную от первоначального прогиба сторону. Контроль величины деформации вала при изгибе его нажимным устройством выполняют при помощи индикаторов. При нагреве вал стремится выгнуться вверх; встречая дополнительное сопротивление вследствие этого, материал в месте нагрева переходит предел текучести раньше, чем при чисто термической правке.

Метод релаксации напряжений заключается в том, что вал на участке его максимального искривления подвергается нагреву по всей окружности и на глубину всего сечения до температуры 600…650 °С. Нагрев производится при вращении вала на малых оборотах. После выдержки при указанной температуре в течение нескольких часов вал устанавливается прогибом вверх, и сразу же на нагретый участок вала с помощью специального приспособления производится нажим в сторону, противоположную прогибу. Нажим производится для создания небольшого напряжения в материале нагретого вала (упругая деформация). Время, в течение которого нагретый вал выдерживается в напряженном состоянии, должно быть достаточным, чтобы под действием нагрузки и высокой температуры необходимая часть упругой деформации перешла в пластическую. Основным достоинством метода правки, основанного на явлении релаксации напряжений, является выпрямление вала с обеспечением стабильности формы при дальнейшей эксплуатации. При этом в процессе правки, проводимой при напряжениях значительно ниже предела текучести, не возникает опасных внутренних напряжений.

1. Неравномерное охлаждение неподвижного вала после остановки турбины. Нижняя часть вала охлаждается больше, чем часть находящаяся выше. Из-за неравномерности остывания волокон на нижней части вала сокращается сильнее, чем волокон в верхней части.

2. Неравномерное остывание цилиндра турбины. Причина: плохое качество тепловой изоляции, либо наличие застойных зон в защитной обшивке турбины.

3. Задевание за лабиринтовые, кольцевые или диаметральные

4. Неправильная посадка диска на вал.

5. Недостаточные осевые зазоры между деталями ротора турбины.

6. Большие механические напряжения. Могут происходить при резком торможении.

При наличии из одной указанной выше причин на вращающийся, что приводит к уменьшению радиальных зазоров, задеванию деталей ротора о неподвижные детали турбины. При таком задевании, возникает трение приводящее к нагреву и прогибу вала в сторону задевания.

а) вал при

охлаждении

а) вал при

В результате задевания это место вала нагревается и волокна металла стремятся расширится, соответственно и тем-ра нагрева, но этому препятствуют окружающие более холодные слои металла. В холодном металле возникают остаточные деформации.

Правка валов.

Производится в случае если прогиб превышает 0,06мм.

Перед правкой необходимо провести подготовительные операции:

Осмотр вала. Выявленное место дефекта зачищается и подвергается химической обработке с целью выявления трещин. При их обнаружении трещины выводят на токарном станке, путем снятия стружки. До тех пор пока трещина не выведена стружка в месте наличия трещины будет обрываться, окончание отрыва стружки свидетельствует о полном выведении трещины. Эту операцию согласовывают с заводом изготовителем. После выведения трещин вал подвергают повторному травлению и после этого приступают к работе.

Существует несколько видов правки валов:

1.Термическая правка.

Заключается в одностороннем местном нагревании выпускной стороны вала до тем-ры выше предела текучести. Нагреваемые волокна стремятся расширится, но получают сопротивление со стороны не нагретых участков, выпрямляются за счет упруго пластической деформации, т.е.делают обратную операцию при которой произошел прогиб.

2.Механическая правка.

Производится в холодном состоянии чеканкой в местах наибольшего прогиба. Сущность метода заключается в чеканке растянуть волокна вала сжатые в процессе работы.

3.Термомеханическая правка.

Комбинированный способ.

Метод релаксации напряжений заключается: участок вала подвергается нагреванию до тем-ры 600-650 0 С и с последующим прогибом его в сторону противоположную искривлению. Нагрев вала производиться с индукционных обмоток. Метод основан на явлении ползучести и релаксации напряжений и применяется в несколько этапов. Это есть усовершенствованный термомеханический метод.

Производство ремонта поломанных валов.

Поломанные части вала соединяются двумя способами: