Сила реактивной тяги в чем физический смысл. Реактивный двигатель

Порох можно использовать для метания снарядов и без применения прочных, тяжелых орудийных стволов.


Всем известна ракета. Для движения ракеты, как мы знаем, ствол не нужен. Оказывается, принцип движения ракеты можно с успехом использовать для метания артиллерийских снарядов.


В чем состоит этот принцип?


Он состоит в использовании так называемой реактивной силы, поэтому и снаряды, в которых используется эта сила, называются реактивными.

Рис. 44. Ракета, двигающаяся под действием реактивной силы


На рис. 44 показана ракета, в хвостовой части которой имеется отверстие. После воспламенения пороха внутри ракеты образующиеся пороховые газы с большой скоростью будут "вытекать" через отверстие. При вытекании струи газов из камеры сгорания пороха возникает сила, направленная в сторону движения струи; величина этой силы зависит от массы вытекающих газов и от скорости их истечения.


Из физики известно, что всякому действию всегда отвечает равное ему противодействие. Короче мы иногда говорим так: "действие равно противодействию". Значит, и в рассматриваемом нами случае при возникновении силы, направленной в сторону движения газов, должна возникнуть равная ей по величине, но противоположно, направленная сила, под действием которой ракета начинает двигаться вперед.


Эта противоположно направленная сила является как бы реакцией на возникновение силы, направленной в сторону истечения газов; поэтому она называется реактивной силой, а движение ракеты, вызываемое реактивной силой, – реактивным движением.


Посмотрим, какие преимущества дает использование реактивной силы.


Пороховой заряд для метания /реактивного снаряда помещается в самом снаряде. Значит, орудийный ствол в данном случае не нужен, так как снаряд приобретает скорость не под действием пороховых газов, образующихся вне снаряда, а под действием реактивной силы, развивающейся в самом снаряде при выстреле.


Для направления движения реактивного снаряда достаточно легкой "направляющей", например рейки. Это очень выгодно, так как без ствола орудие значительно легче и подвижнее.


На орудии реактивной артиллерии (на боевой машине) легко укрепить несколько направляющих и вести стрельбу залпом, выпуская одновременно несколько реактивных снарядов. Могучее действие таких залпов проверено на опыте стрельбы советских "катюш" в Великую Отечественную войну.


Реактивный снаряд не испытывает высокого внешнего давления, как артиллерийский снаряд в канале ствола. Поэтому стенки его можно сделать тоньше и благодаря этому поместить в снаряд больше взрывчатого вещества.


Таковы основные преимущества реактивных снарядов,


Но есть и недостатки. Например, при стрельбе реактивной артиллерии получается значительно большее рассеивание снарядов, чем при стрельбе из ствольных артиллерийских орудий, значит, стрельба снарядами реактивной артиллерии менее точна.


Поэтому мы применяем и те и другие орудия, и те и другие снаряды и используем для метания снарядов давление пороховых газов в стволе и реактивную силу.


    Любую задачу в механике можно решить с помощью законов Ньютона. Однако применение закона сохранения импульса во многих случаях значительно упрощает решение. Большое значение имеет закон сохранения импульса для исследования реактивного движения.

Какое движение называется реактивным?

Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно тела, например при истечении продуктов сгорания из сопла реактивного летательного аппарата. При этом появляется так называемая реактивная сила, сообщающая телу ускорение.

Наблюдать реактивное движение очень просто. Надуйте детский резиновый шарик и отпустите его. Шарик стремительно взовьется вверх (рис. 5.4). Движение, правда, будет кратковременным. Реактивная сила действует лишь до тех пор, пока продолжается истечение воздуха.

Рис. 5.4

Главная особенность реактивной силы состоит в том, что она возникает без какого-либо взаимодействия с внешними телами. Происходит лишь взаимодействие между ракетой и вытекающей из нее струей вещества.

Сила же, сообщающая ускорение автомобилю или пешеходу на земле, пароходу на воде или винтовому самолету в воздухе, возникает только за счет взаимодействия этих тел с землей, водой или воздухом.

При истечении продуктов сгорания топлива они за счет давления в камере сгорания приобретают некоторую скорость относительно ракеты и, следовательно, некоторый импульс. Поэтому в соответствии с законом сохранения импульса сама ракета получает такой же по модулю импульс, но направленный в противоположную сторону.

Масса ракеты с течением времени убывает. Ракета в полете является телом переменной массы. Для расчета ее движения удобно применить закон сохранения импульса.

Уравнение Мещерского

Выведем уравнение движения ракеты и найдем выражение для реактивной силы. Будем считать, что скорость вытекающих из ракеты газов относительно ракеты постоянна и равна . Внешние силы на ракету не действуют: она находится в космическом пространстве вдали от звезд и планет.

Пусть в некоторый момент времени скорость ракеты относительно инерциальной системы, связанной со звездами, равна (рис. 5.5, а), а масса ракеты равна М. Через малый интервал времени Δt масса ракеты станет равной

где μ - расход топлива(1).

Рис. 5.5

За этот лее промежуток времени скорость ракеты изменится на Δ и станет равной 1 = + Δ. Скорость истечения газов относительно выбранной инерциальной системы отсчета равна + (рис. 5.5,б), так как до начала сгорания топливо имело ту же скорость, что и ракета.

Запишем закон сохранения импульса для системы ракета - газ:

Раскрыв скобки, получим:

Слагаемым μΔtΔ можно пренебречь по сравнению с остальными, так как оно содержит произведение двух малых величин (это величина, как говорят, второго порядка малости). После приведения подобных членов будем иметь:

Это одно из уравнений Мещерского(2) для движения тела переменной массы, полученное им в 1897 г.

Если ввести обозначение р = -μ, то уравнение (5.4.1) совпадет по форме записи со вторым законом Ньютона. Однако масса тела М здесь не постоянна, а убывает со временем из-за потери вещества.

Величина р = -μ носит название реактивной силы. Она появляется вследствие истечения газов из ракеты, приложена к ракете и направлена противоположно скорости газов относительно ракеты. Реактивная сила определяется лишь скоростью истечения газов относительно ракеты и расходом топлива. Существенно, что она не зависит от деталей устройства двигателя. Важно лишь, чтобы двигатель обеспечивал истечение газов из ракеты со скоростью при расходе топлива μ. Реактивная сила космических ракет достигает 1000 кН.

Если на ракету действуют внешние силы, то ее движение определяется реактивной силой и суммой внешних сил. В этом случае уравнение (5.4.1) запишется так:

Принцип реактивного движения основан на том, что истекающие из реактивного двигателя газы получают импульс. Такой же по модулю импульс приобретает ракета.

Вопросы для самопроверки

(1) Расходом топлива называется отношение массы сгоревшего топлива ко времени его сгорания.

(2) Мещерский И. В. (1859-1935) - профессор Петербургского политехнического института. Его труды по механике тел переменной массы стали теоретической основой ракетной техники.

Одно из важнейших практических применений закон сохранения количества движения нашел при решении задачи о движении тел переменной массы. Это решение становится особенно простым в том случае, когда присоединение (или отделение) частиц к движущемуся телу происходит так же, как при неупругом ударе,- силы

Рис. 4.22 (см. скан)

действуют только во время контакта между частицами или телами. Именно так взаимодействуют продукты сгорания топлива с ракетой. Решим задачу для Ллучая движения ракеты.

Сначала обратим внимание на некоторые особенности выброса продуктов сгорания из двигателя ракеты.

Если в некоторый момент времени ракета движется со скоростью относительно Земли (рис. 4.22, а), то вместе с ней с такой же скоростью движется и та часть топлива, которая должна будет сгореть в ближайшую секунду. Во время горения продукты сгорания этой части топлива получают дополнительную скорость и относительно самой ракеты (рис. 4.22, б). Относительно Земли они имеют скорость Сама ракета при этом получает тоже некоторое приращение скорости. После выброса продукты сгорания перестают взаимодействовать с ракетой. Это дает право рассматривать выброшенные продукты сгорания и ракету как систему из двух тел, взаимодействующих между собой вовремя горения так же, как при неупругом ударе.

Применим к расчету движения этой системы закон сохранения количества движения.

Допустим, что реактивный двигатель ракеты каждую секунду выбрасывает массу продуктов сгораниятоплива. Продукты сгорания во время выброса получают дополнительную скорость и относительно ракеты. Скорость ракеты до сгорания очередной порции топлива Масса ракеты после сгорания этой порции Определим скорость ракеты после сгорания этой порции топлива и рассчитаем силу тяги двигателя ракеты. При этом будем считать, что сопротивление воздуха и сила тяжести отсутствуют, т. е. наша система тел изолирована.

Для составления уравнения закона сохранения количества движения в качестве первого выберем момент времени до выбрасывания очередной порции газа. В качестве второго - момент времени после выбрасывания этой порции. За положительное направление векторов выберем направление движения ракеты. Так как направления скоростей известны, то в алгебраических уравнениях их знаки запишем открыто, т. е. будем понимать под обозначениями только их модули.

До выброса газов ракета и топливо по условию имеют одинаковую скорость Количество движения ракеты в этот момент будет Количество движения топлива, которое должно сгореть в ближайшую секунду, будет Полное количество движения системы для этого момента времени равно

После сгорания очередной порции топлива ракета будет иметь какую-то неизвестную пока скорость относительно Земли. Количество движения ракеты станет равным Выброшенные газы, получившие скорость и относительно ракеты, будут иметь относительно Земли скорость Количество движения этих газов станет равным Полное количество движения системы для этого момента времени равно

Можно написать уравнение закона сохранения количества движения, так как по условию наша система изолирована:

Раскроем скобки и приведем подобные члены:

Отсюда для скорости ракеты после сгорания очередной порции топлива получаем выражение:

Для расчета силы тяги двигателя перепишем второе уравнение в следующем виде:

В правой части этого уравнения стоит изменение количества движения ракеты за одну секунду. Но по второму закону Ньютона изменение количества движения тела возникает только в результате действия импульсов каких-то сил. Следовательно, уравнение говорит о том, что выбрасывание газов из двигателя сопровождается появлением некоторых сил, действующих на ракету. Эти силы возникают при изменении массы движущегося тела и получили название реактивных сил.

Для определения реактивных сил, действующих на ракету, сопоставим последнее выражение с уравнением второго закона Ньютона, записанным для массы ракеты Обозначим реактивную силу тяги буквой и положим время Из сопоставления формул видно, что правые части сравниваемых уравнений одинаковы. Следовательно, и левые части этих уравнений должны быть равны, т. е.

Это значит, что модуль реактивной силы тяги двигателя будет равен

Другими словами, реактивная сила, действующая на тело переменной массы, всегда пропорциональна массе ежесекундно отделяющихся частиц и их скорости относительно тела.

Уравнения движения тел переменной массы и выражение для реактивной силы были впервые найдены петербургским профессором И. В. Мещерским в 1897 г. Уравнения Мещерского принадлежат к числу важнейших открытий в механике, сделанных на рубеже XIX и XX вв. С особой силой значение этих открытий выявилось в наши дни, когда уравнения Мещерского стали широко использоваться в ракетной технике. Формула для реактивной силы, с которой мы познакомились, сейчас является основной для расчета силы тяги ракетных и турбореактивных двигателей всех систем.


Определение

Понятие «сила тяги» часто встречается в задачах по физике, когда речь идеи о механической мощности или движении транспорта. Вообще говоря, это гипотетическая сила, которая вводится для удобства при решении задач.

Поясним эту мысль. Рассмотрим движение автобуса. Сила тяги (обозначим ее как ${\overline{F}}_t$) в этом случае является силой трения покоя, которая действует на нижние точки колес со стороны поверхности шоссе. Для реализации движения автобуса по дороге колеса транспортного средства вращает двигатель так, чтобы сила трения была направлена в сторону перемещения (рис.1). В этом случае силу тяги определим как силу трения, которая возникает между ведущими колесами и поверхностью, по которой колеса катятся. Если сила трения отсутствует (колесо находится на льду), то автобус не двигается с места, так как колеса проскальзывают. Трение, которое появляется между колесами и поверхностью дороги создает поступательное перемещение.

Так как сила тяги зависит от силы трения, то для увеличения величины $F_t\ $ следует увеличить трение. Трение увеличивается при росте коэффициента трения и (или) с увеличением силы нормального давления, которое зависит от массы тела.

Возникает вопрос о необходимости введения некоей силы тяги вместо того, чтобы использовать привычную силу трения. При выделении из внешних сил, которые действуют на наш автобус силы тяги и силы сопротивления движению уравнения движения имеют универсальный вид, и, используя силу тяги, просто выражается полезная механическая мощность ($N$):

где $\overline{v}$ - скорость движения тела (у нас автобуса).

Отметим, что у силы тяги нет четко определенной формулы, как, например, у гравитационной силы или силы Архимеда и других сил. Ее часто вычисляют, используя второй закон Ньютона и рассматривая все силы, которые действуют на тело.

Реактивная сила тяги

Уравнения движения тел переменной массы и формулу для вычисления реактивной силы получил первым И.В. Мещерский в 1897 г. Формула реактивной силы является основой для расчета силы тяги ракетных и турборакетных двигателей всех систем.

Пусть ракета перемещается со скоростью $\overline{v}$ относительно Земли. Вместе с ней с такой же скоростью движется часть топлива, которая сгорает в ближайшую секунду. При сгорании продукты горения этой части топлива получают дополнительную скорость $\overline{u}$ относительно ракеты. Относительно Земли они имеют скорость $\overline{v}-\overline{u}$. При этом сама ракета увеличивает скорость. После выброса продукты горения не взаимодействуют с ракетой. Поэтому систему ракета плюс продукты горения топлива рассматривают как систему из двух тел, которые взаимодействуют при горении по законам неупругого удара. Пусть реактивный двигатель ракеты каждую секунду выбрасывает массу $\mu $ продуктов горения топлива. Используя закон сохранения импульса и второй закон Ньютона получают, что модуль реактивной силы тяги двигателя ($R$) ракеты равен:

Формула (2) показывает, что реактивная сила, которая действует на тело переменной массы, пропорциональна массе отделяющихся частиц за единицу времени и скорости движения этих частиц относительно тела.

Примеры задач с решением

Пример 1

Задание. Сила тяги, действующая на тело, находящееся на наклонной плоскости (рис.2) направлена вдоль этой плоскости вверх (рис.2). Какова ее величина, если масса тела равна $m$, угол наклона плоскости $\alpha ,\ $ускорение движения тела $a$? Коэффициент трения тела о плоскость равен $\mu $. Тело движется с постоянной скоростью в гору.

Решение. Запишем второй закон Ньютона для сил, действующих на тело, учтем, что тело движется равномерно:

Запишем проекции уравнения (1.1) на оси X и Y:

\[\left\{ \begin{array}{c} X:\ -mg{\sin \alpha +\ }F-F_{tr}=0\left(1.2\right);;\ \\ Y:\ N-mg{\cos \alpha =0\left(1.3\right).\ } \end{array} \right.\]

Сила трения связана с силой нормального давления как:

Выразим из (1.3) $N$, используем выражение (1.4), получим из (1.2) силу тяги:

\[-mg{\sin \alpha +\ }F-\mu mg{\cos \alpha \ }=0\to F=\mu mg{\cos \alpha \ }+mg{\sin \alpha .\ }\]

Ответ. $F=mg(\mu {\cos \alpha \ }+{\sin \alpha).\ }$

Пример 2

Задание. Ракету, массой (в начальный момент времени) равной $M,$ запустили вертикально вверх. Относительная скорость выброса продуктов горения равна $u$, расход горючего составляет $\mu $. Каким будет ускорение ракеты через время $t$ после старта, если сопротивление воздуха не учитывать, поле силы тяжести считать однородным.

Решение. Сделаем рисунок.

На ракету (из условий задачи) будут действовать две силы: сила тяжести и реактивная сила тяги. Запишем уравнение движения ракеты:

В проекции на ось Y уравнение (2.1) запишем как:

Реактивная сила тяги может быть найдена как:

Учитывая равенство (2.3) уравнение преобразуем к виду:

\[\mu u-mg=ma\to a=\frac{\mu u-mg}{m}\left(2.4\right).\]

Масса ракеты в момент времени $t$ равна:

Подставим (2.5) в (2.4) имеем:

Ответ. $a=\frac{\mu u}{M-\mu t}-g.$

Реактивная тяга обычно рассматривается как сила реакции отделяющихся частиц. Точкой приложения её считают центр истечения - центр среза сопла двигателя, а направление - противоположное вектору скорости истечения продуктов сгорания (или рабочего тела, в случае не химического двигателя). То есть, реактивная тяга :

Энциклопедичный YouTube

    1 / 3

    ✪ Сохранение импульса: реактивное движение

    ✪ Урок 106. Реактивное движение

    ✪ А правда ли, что...?#4-Реактивная тяга?!

    Субтитры

Реактивное движение в природе

Доказательство

M p ⋅ Δ v → Δ t = − Δ m t Δ t ⋅ u → {\displaystyle m_{p}\cdot {\frac {\Delta {\vec {v}}}{\Delta t}}=-{\frac {\Delta m_{t}}{\Delta t}}\cdot {\vec {u}}}

F → p = m p ⋅ a → = − u → ⋅ Δ m t Δ t {\displaystyle {\vec {F}}_{p}=m_{p}\cdot {\vec {a}}=-{\vec {u}}\cdot {\frac {\Delta m_{t}}{\Delta t}}}

Уравнение Мещерского

Если же на ракету , кроме реактивной силы F → p {\displaystyle {\vec {F}}_{p}} , действует внешняя сила F → {\displaystyle {\vec {F}}} , то уравнение динамики движения примет вид:

M p ⋅ Δ v → Δ t = F → + F → p ⇔ {\displaystyle m_{p}\cdot {\frac {\Delta {\vec {v}}}{\Delta t}}={\vec {F}}+{\vec {F}}_{p}\Leftrightarrow } m p ⋅ Δ v → Δ t = F → + (− u → ⋅ Δ m t Δ t) {\displaystyle m_{p}\cdot {\frac {\Delta {\vec {v}}}{\Delta t}}={\vec {F}}+(-{\vec {u}}\cdot {\frac {\Delta m_{t}}{\Delta t}})}

Формула Мещерского представляет собой обобщение