Трансформатор тока — принцип работы, назначение и устройство. Назначение и принцип действия трансформатора тока Трансформатор тока является средством измерения

Измерительные трансформаторы являются обособленной группой электротехнических изделий.

В зависимости от конструкции назначение измерительных трансформаторов тока и напряжения различно – они преобразуют основные показатели электрических цепей (напряжение или ток), уменьшая их величину до заданного значения.

Главная задача заключается в достижении необходимых параметров, при которых точно и корректно работает контрольно-измерительная аппаратура.

Все измерительные трансформаторы делятся на две группы исходя из основных критериев:

  • по току;

  • по напряжению.

В зависимости от их принадлежности к одной из категорий существенно отличается конструкция и принцип работы изделий. Давайте более подробно рассмотрим основные конструктивные особенности и назначение измерительных трансформаторов каждой группы.

Принцип действия измерительных трансформаторов напряжения основан на понижении подводимого напряжения и изолировании подключенных после него измерительных приборов от влияния повышенного напряжения в сетях переменного тока.

Дополнительно повышается уровень безопасности для персонала, который обслуживает высоковольтные сети и снимает контрольные показания с приборов. Широкое применение такие изделия получили в релейных автоматических системах защиты и в различных электроустановках.

Благодаря включению в цепь питания этого трансформатора можно использовать стандартные контрольно-измерительные приборы для снятия точных показаний в линиях с высоким значением напряжения.

В противном случае пришлось бы существенно менять конструкцию измерительной аппаратуры и увеличивать ее в размерах за счет дополнительных катушек индуктивности, изоляции и других элементов.

Принцип действия измерительных трансформаторов тока заключается в снижении до необходимого уровня силы тока от первичного источника, к которому запитан измерительный прибор. Главное применение таких трансформаторов – контроль и снятие точных показаний в высоковольтных сетях.

Основная особенность устройства заключается в полном контроле силы тока и обеспечении безопасной работы с подключенной контрольно-измерительной аппаратурой, на которую ограничена подача тока высокого значения.

Варианты маркировки

На шильде изделия можно встретить различную информацию, которая поможет подобрать правильное устройство исходя из заданных параметров основных характеристик. Маркировка измерительных трансформаторов различается в зависимости от типа устройства.

Так, для трансформаторов тока характерны следующие символы и обозначения:

  • «Т» (первая буква) – трансформатор тока;

  • вторая буква в обозначении отвечает за тип конструкции. Может быть четыре варианта: «О», «П», «Ф», «Ш», что означает опорный, проходной, фарфор, шинный;

  • третьей буквой маркируется материал изоляции – литая (Л), масляная (М) или газовая (Г).

После буквенной маркировке указываются числовые значения, которые характеризуют класс изоляции, климат и коэффициент трансформации. Для примера: маркировка ТОМ-3У2 100/3 читается как «трансформатор тока опорный с масляной изоляцией, 3кВ, для умеренного климата второго класса с коэффициентом 100:3».

У трансформаторов напряжения маркировка отличается большим количеством букв, которые обозначают количество фаз, тип изоляции, класс прибора и его назначение, тип конструкции.

Более подробно это выглядит следующим образом:

  • класс трансформатора – Н (напряжение);

  • по количеству фаз – одна (О) или три (Т);

  • принадлежность – измерительный (И);

  • особенности конструкции – заземляемая первичная обмотка (З);

  • разновидность – каскадный (К), антирезонансный (А), цельнолитой корпус из полимера (Л), наличие емкостного делителя (ДЕ), фарфоровая покрышка (Ф);

  • тип исполнения – масляный (М), сухой (С).

Знание маркировки существенно облегчает выбор измерительных трансформаторов.

Особенности монтажа

Монтаж измерительных трансформаторов производится высококвалифицированными специалистами, которые обязаны иметь категорию допуска к электротехническим работам не ниже третьего уровня. Перед установкой необходимо провести проверку на выявление возможных дефектов.

  • визуальный осмотр корпуса на предмет механических повреждений;

  • проверка коэффициента трансформации на соответствие заданным параметрам;

  • состояние вторичной обмотки (отсутствие обрывов);

  • правильно ли промаркированы все выводы для подключения к источнику питания и контрольно-измерительной аппаратуре;

  • целостность фарфоровой покрышки и токоведущего стержня.

После визуального осмотра можно переходить к процессу установки и дальнейшего введения в эксплуатацию.

Для трансформаторов напряжения также проводят визуальный осмотр перед установкой.

Обращают внимание на следующие моменты:

  • целостность корпуса;

  • отсутствие течи масла;

  • предварительное испытание измерительных трансформаторов (определяют полярность у выводов для низшего и высшего напряжения, измеряют коэффициент трансформации, проверяют величину сопротивления обмоток);

  • проверка уровня масла. В больших устройствах количества масла определяют по специальному индикатору, а в компактных изделиях без расширителя не доливают масла примерно на 2-3 сантиметра до крышки. Образовавшийся воздушный карман и будет играть роль расширителя.

Все монтажные и пусковые работы проводятся в соответствии с указаниями изготовителя и с соблюдением правил безопасности.

Эксплуатация

Эксплуатация измерительных трансформаторов должна проводиться строго в соответствии с рекомендациями и предписаниями фирмы-изготовителя. В процессе использования устройств рекомендуется регулярный профилактический осмотр с целью выявления возможных неисправностей и быстрого их устранения.

Регулярное обслуживание для трансформаторов тока предусматривает следующие мероприятия:

  • контроль нагрузки внешней цепи с целью недопущения перегрузок (коэффициент перегруженности линии не может быть больше 20%);

  • внешний осмотр состояния подводящих контактов;

  • проверка целостности фарфоровых изоляторов;

  • осмотр внешней изоляции, удаление загрязнений и влаги.
  • состояние внешнего кожуха на предмет наличия повреждений и подтеков масла;

  • проверка уровня масла;

  • необходимо обращать внимание на наличие специфических тресков и посторонних шумов внутри изделия;

  • проверка целостности фарфоровых изоляторов и сварных швов.

При обнаружении любого вида неполадок устройство обесточивается и выводится из эксплуатации.

Ремонт измерительных трансформаторов проводят специализированные организации (обычно это сертифицированные мастерские от фирм производителей оборудования).

Чтобы узнать больше о новинках в мире электротехники, увидеть современное оборудование и узнать о передовых технологиях в профильных отраслях, достаточно посетить выставку «Электро».

Широкая международная экспозиция будет принимать посетителей на территории ЦВК «Экспоцентр».

На выставке можно больше узнать больше о назначении, принципе действия измерительных трансформаторов, а также особенностях монтажа и ремонта устройств.

Читайте другие наши статьи:

При эксплуатации энергетических систем часто возникает необходимость преобразования определенных электрических величин в подобные им аналоги с пропорционально измененными значениями. Это позволяет моделировать определенные процессы в электроустановках, безопасно выполнять измерения.

Работа трансформатора тока (ТТ) основана на , действующего в электрических и магнитных полях, изменяющихся по форме гармоник переменных синусоидальных величин.

Он преобразует первичную величину вектора тока, протекающего в силовой цепи, во вторичное пониженное значение с соблюдением пропорциональности по модулю и точной передачей угла.

Принцип работы трансформатора тока

Демонстрацию процессов, происходящих при преобразованиях электрической энергии внутри трансформатора, поясняет схема.

Через силовую первичную обмотку с числом витков w1 протекает ток I1, преодолевая ее полное сопротивление Z1. Вокруг этой катушки формируется магнитный поток Ф1, который улавливается магнитопроводом, расположенным перпендикулярно направлению вектора I1. Такая ориентация обеспечивает минимальные потери электрической энергии при ее преобразовании в магнитную.

Пересекая перпендикулярно расположенные витки обмотки w2, поток Ф1 наводит в них электродвижущую силу Е2, под влиянием которой возникает во вторичной обмотке ток I2, преодолевающий полное сопротивление катушки Z2 и подключенной выходной нагрузки Zн. При этом на зажимах вторичной цепи образуется падение напряжения U2.

Величина К1, определяемая отношением векторов I1/I2, называется коэффициентом трансформации . Ее значение задается при проектировании устройств и замеряется в готовых конструкциях. Отличия показателей реальных моделей от расчетных значений оценивается метрологической характеристикой - классом точности трансформатора тока .

В реальной работе значения токов в обмотках не являются постоянными величинами. Поэтому коэффициент трансформации принято обозначать по номинальным значениям. Например, его выражение 1000/5 означает, что при рабочем первичном токе 1 килоампер во вторичных витках будет действовать нагрузка 5 ампер. По этим значениям и рассчитывается длительная эксплуатация этого трансформатора тока.

Магнитный поток Ф2 от вторичного тока I2 уменьшает значение потока Ф1 в магнитопроводе. При этом создаваемый в нем поток трансформатора Фт определяется геометрическим суммированием векторов Ф1 и Ф2.

Опасные факторы при работе трансформатора тока

Возможность поражения высоковольтным потенциалом при пробое изоляции

Поскольку магнитопровод ТТ выполнен из металла, обладает хорошей проводимостью и соединяет между собой магнитным путем изолированные обмотки (первичную и вторичную), то возникает повышенная опасность получения электротравм персоналом или повреждения оборудования при нарушениях изоляционного слоя.

С целью предотвращения таких ситуаций используется заземление одного из вторичного выводов трансформатора для стекания через него высоковольтного потенциала при авариях.

Эта клемма всегда имеет обозначение на корпусе прибора и указывается на схемах подключения.

Возможность поражения высоковольтным потенциалом при разрыве вторичной цепи

Выводы вторичной обмотки маркируют «И1» и «И2» так, чтобы направление протекающих токов было полярным, совпадало по всем обмоткам. При работе трансформатора они всегда должны быть подключены на нагрузку.

Объясняется это тем, что проходящий по первичной обмотке ток обладает мощностью (S=UI) высокого потенциала, которая трансформируется во вторичную цепь с малыми потерями и при разрыве в ней резко уменьшается составляющая тока до значений утечек через окружающую среду, но при этом значительно возрастает падение напряжения на разорванном участке.

Потенциал на разомкнутых контактах вторичной обмотки при прохождении тока в первичной схеме может достигать нескольких киловольт, что очень опасно.

Поэтому все вторичные цепи трансформаторов тока постоянно должны быть надежно собраны, а на выведенных из работы обмотках или кернах всегда устанавливаются шунтирующие закоротки.

Конструкторские решения, используемые в схемах трансформаторов тока

Любой трансформатор тока, как электротехническое устройство, предназначен для решения определенных задач при эксплуатации электроустановок. Промышленность выпускает их большим ассортиментом. Однако, в некоторых случаях при усовершенствовании конструкций бывает проще использовать готовые модели с отработанными технологиями, чем заново проектировать и изготавливать новые.

Принцип создания одновиткового ТТ (в первичной схеме) является базовым и показан на картинке слева.

Здесь первичная обмотка, покрытая изоляцией, выполнена прямолинейной шиной Л1-Л2, проходящей через магнитопровод трансформатора, а вторичная намотана витками вокруг него и подключена на нагрузку.

Принцип создания многовиткового ТТ с двумя сердечниками, показан справа. Здесь берется два одновитковых трансформатора со своими вторичными цепями и через их магнитопроводы пропускается определенное количество витков силовых обмоток. Таким способом не только усиливается мощность, но дополнительно увеличивается количество выходных подключаемых цепочек.

Три этих принципа могут быть модифицированы различными способами. Например, применение нескольких одинаковых обмоток вокруг одного магнитопровода широко распространено для создания отдельных, независимых друг от друга вторичных цепей, которые работают в автономном режиме. Их принято называть кернами. Таким способом подключают различные по назначению защиты выключателей или линий (трансформаторов) к токовым цепям одного трансформатора тока.

В устройствах энергетического оборудования работают комбинированные трансформаторы тока с мощным магнитопроводом, используемом при аварийных режимах на оборудовании, и обычным, предназначенным для замеров при номинальных параметрах сети. Обмотки, навитые вокруг усиленного железа, используют для работы защитных устройств, а обычные - для измерений тока или мощности/сопротивления.

Их так и называют:

    защитными обмотками, маркируемыми индексом «Р» (релейные);

    измерительными, обозначаемыми цифрами метрологического класса точности ТТ, например, «0,5».

Защитные обмотки при нормальном режиме работы трансформатора тока обеспечивают измерение вектора первичного тока с точностью 10%. Их по этой величине так и называют - «десятипроцентными».

Погрешности измерений

Принцип определения точности работы трансформатора позволяет оценить его схема замещения, показанная на картинке. В ней все значения первичных величин условно приведены к действию во вторичных витках.

Схема замещения описывает все процессы, действующие в обмотках с учетом энергии, затрачиваемой на намагничивание сердечника током I.

Построенная на ее основе векторная диаграмма (треугольник СБ0) свидетельствует, что ток I2 отличается от значений I’1 на величину I нам (намагничивания).

Чем выше эти отклонения, тем ниже точность работы трансформатора тока. Чтобы учесть ошибки измерения ТТ введены понятия:

    относительной токовой погрешности, выражаемой в процентах;

    угловой погрешности, вычисляемой длиной дуги АБ в радианах.

Абсолютную величину отклонения векторов первичного и вторичного тока определяет отрезок АС.

Общепромышленные конструкции трансформаторов тока выпускаются для работы в классах точности, определяемых характеристиками 0,2; 0,5; 1,0; 3 и 10%.

Практическое применение трансформаторов тока

Разнообразное количество их моделей можно встретить как в маленьких электронных приборах, размещенных в небольшом корпусе, так и в энергетических устройствах, занимающих значительные габариты в несколько метров. Они разделяются по эксплуатационным признакам.

Классификация трансформаторов тока

По назначению их разделяют на:

  • измерительные, осуществляющие передачу токов на приборы измерения;
  • защитные, подключаемые к токовым цепям защит;
  • лабораторные, обладающие высоким классом точности;
  • промежуточные, используемые для повторного преобразования.

При эксплуатации объектов используют ТТ:

    наружного монтажа на открытом воздухе;

    для закрытых установок;

    встроенные в оборудование;

    накладные - надеваемые на проходной изолятор;

    переносные, позволяющие делать замеры в разных местах.

По величине рабочего напряжения оборудования ТТ бывают:

    высоковольтными (более 1000 вольт);

    на значения номинального напряжения до 1 киловольта.

Также трансформаторы тока классифицируют по способу изоляционных материалов, количеству ступеней трансформации и другим признакам.

Выполняемые задачи

Для работы цепей учета электрической энергии, измерений и защит линий или силовых автотрансформаторов используются выносные измерительные трансформаторы тока.

На фото ниже показано их размещение для каждой фазы линии и монтаж вторичных цепей в клеммном ящике на ОРУ-110 кВ для силового автотрансформатора.

Эти же задачи выполняют трансформаторы тока на ОРУ-330 кВ, но, учитывая сложность более высоковольтного оборудования, они имеют значительно большие габариты.

На энергетическом оборудовании часто применяют встроенные конструкции трансформаторов тока, которые размещают прямо на корпусе силового объекта.

Они имеют вторичные обмотки с выводами, размещаемыми вокруг высоковольтного ввода в герметичном корпусе. Кабели от зажимов ТТ проложены к прикрепленным здесь же клеммным ящикам.

Внутри высоковольтных трансформаторов тока чаще всего в качестве изолятора используется специальное трансформаторное масло. Пример такой конструкции показан на картинке для трансформаторов тока серии ТФЗМ, рассчитанной на работу при 35 кВ.

До 10 кВ включительно используются твердые диэлектрические материалы для изоляции между обмотками при изготовлении корпуса.

Примером может служить трансформатор тока марки ТПЛ-10, используемый в КРУН, ЗРУ и других видах распределительных устройств.

Пример подключения вторичной токовой цепи одного из кернов защит REL 511 для выключателя линии 110 кВ демонстрирует упрощенная схема.

Неисправности трансформатора тока и способы их отыскания

У включенного под нагрузку трансформатора тока может нарушиться электрическое сопротивление изоляции обмоток или их проводимость под действием теплового перегрева, случайных механических воздействий либо из-за некачественного монтажа.

В действующем оборудовании чаще всего повреждаются изоляция, что приводит к межвитковым замыканиям обмоток (снижению передаваемой мощности) или возникновению токов утечек через случайно созданные цепи вплоть до КЗ.

С целью выявления мест некачественного монтажа силовой схемы периодически проводятся осмотры работающей схемы тепловизорами. На их основе своевременно устраняются дефекты нарушенных контактов, уменьшается перегрев оборудования.

Проверку отсутствия межвитковых замыканий осуществляют специалисты лабораторий РЗА:

    снятием вольтамперной характеристики;

    прогрузкой трансформатора от постороннего источника;

    замерами основных параметров в рабочей схеме.

Они же анализируют величину коэффициента трансформации.

При всех работах оценивается соотношение между векторами первичных и вторичных токов по величине. Отклонения их по углу не осуществляется из-за отсутствия высокоточных фазоизмерительных устройств, которые применяются при поверках трансформаторов тока в метрологических лабораториях.

Высоковольтные испытания диэлектрических свойств возложены на специалистов лаборатории службы изоляции.

В данной статье мы подробно рассмотрим что такое трансформатор тока, опишем принцип его работы, какие бывают типы, а так же расчеты и схемы трансформатора тока.

Описание и принцип работы

Трансформатор тока представляет собой тип «измерительного трансформатора», который предназначен для производства в его вторичной обмотки, которое пропорционально току измеряется в его первичном. Трансформаторы тока уменьшают токи высокого напряжения до гораздо более низкого значения и обеспечивают удобный способ безопасного контроля фактического электрического тока, протекающего в линии электропередачи переменного тока, с использованием стандартного амперметра. Принцип работы основного трансформатора тока немного отличается от обычного трансформатора напряжения.

В отличие от трансформатора напряжения или мощности, рассматриваемого ранее, трансформатор тока состоит из одного или нескольких витков в качестве своей первичной обмотки. Эта первичная обмотка может иметь либо один плоский виток, либо катушку из сверхпрочного провода, намотанного на сердечник, либо просто проводник или шину, расположенную через центральное отверстие, как показано на рисунке. Купить трансформатор тока вы можете в популярном интернет магазине Алиэкспресс:

Из-за такого типа расположения трансформатор тока часто называют также «последовательным трансформатором», поскольку первичная обмотка, которая никогда не имеет более нескольких витков, соединена последовательно с проводником с током, питающим нагрузку.

Однако вторичная обмотка может иметь большое количество витков катушки, намотанных на многослойный сердечник из магнитного материала с малыми потерями. Этот сердечник имеет большую площадь поперечного сечения, так что создаваемая плотность магнитного потока является низкой при использовании провода с меньшей площадью поперечного сечения, в зависимости от того, какой ток должен быть понижен, когда он пытается выдать постоянный ток, независимо от подключенной нагрузки.

Вторичная обмотка будет подавать ток либо на короткое замыкание, в виде амперметра, либо на резистивную нагрузку, пока напряжение, наведенное во вторичной обмотке, не станет достаточно большим, чтобы насытить сердечник или вызвать отказ из-за чрезмерного пробоя напряжения.

В отличие от трансформатора напряжения, первичный ток трансформатора тока не зависит от тока вторичной нагрузки, а контролируется внешней нагрузкой. Вторичный ток обычно оценивается в стандартный 1 Ампер или 5 Ампер для больших значений первичного тока.

Существует три основных типа трансформаторов тока: обмоточный , тороидальный и стержневой .

  • Обмоточный трансформатор тока — первичная обмотка трансформатора физически соединена последовательно с проводником, который несет измеренный ток, протекающий в цепи. Величина вторичного тока зависит от коэффициента оборотов трансформатора.
  • Тороидальный трансформатор тока — они не содержат первичной обмотки. Вместо этого линия, по которой проходит ток, протекающий в сети, проходит через окно или отверстие в тороидальном трансформаторе. Некоторые трансформаторы тока имеют «разделенный сердечник», который позволяет открывать, устанавливать и закрывать его, не отключая цепь, к которой они подключены.
  • Трансформатор тока стержневого типа — в этом типе трансформатора тока используется фактический кабель или шина главной цепи в качестве первичной обмотки, что эквивалентно одному витку. Они полностью изолированы от высокого рабочего напряжения системы и обычно крепятся болтами к токонесущему устройству.

Трансформаторы тока могут снизить или «понизить» уровни тока с тысяч ампер до стандартного выходного сигнала с известным отношением либо к 5 А, либо к 1 А для нормальной работы. Таким образом, небольшие и точные приборы и устройства управления могут использоваться с трансформаторами тока, потому что они изолированы от любых высоковольтных линий электропередач. Существует множество применений для измерения и использования для трансформаторов тока, таких как ваттметры, измерители коэффициента мощности, защитные реле или в качестве катушек отключения в магнитных выключателях или MCB.

Конструкция и схема трансформатора тока

Обычно трансформаторы тока и амперметры используются вместе как согласованная пара, в которой конструкция трансформатора тока такова, чтобы обеспечить максимальный вторичный ток, соответствующий полномасштабному отклонению амперметра. В большинстве трансформаторов тока существует приблизительное соотношение обратных витков между двумя токами в первичной и вторичной обмотках. Вот почему калибровка трансформатора тока обычно для определенного типа амперметра.

Большинство трансформаторов тока имеют стандартную вторичную номинальную мощность 5 А, при этом первичные и вторичные токи выражаются в таком соотношении, как 100/5. Это означает, что ток первичной обмотки в 20 раз больше, чем ток вторичной обмотки, поэтому, когда в первичном проводнике протекает 100 ампер, во вторичной обмотке будет протекать 5 ампер. Трансформатор тока, скажем, 500/5, будет производить 5 А во вторичной обмотке при 500 А в первичной обмотке, что в 100 раз больше.

Увеличивая количество вторичных обмоток Ns , ток вторичной обмотки можно сделать намного меньшим, чем ток в измеряемой первичной цепи, потому что, когда Ns увеличивается, Is уменьшается пропорционально. Другими словами, число витков и ток в первичной и вторичной обмотках связаны обратно пропорционально.

Трансформатор тока, как и любой другой трансформатор, должен удовлетворять уравнению ампер-виток, и мы знаем из нашего учебника по трансформаторам напряжения с двойной обмоткой, что это отношение витков равно:

из которого мы получаем:

Коэффициент тока устанавливает коэффициент витков, и, поскольку первичный обычно состоит из одного или двух витков, тогда как вторичный может иметь несколько сотен витков, соотношение между первичным и вторичным может быть довольно большим. Например, предположим, что номинальный ток первичной обмотки составляет 100А. Вторичная обмотка имеет стандартный рейтинг 5А. Тогда соотношение между первичным и вторичным токами составляет 100А-5А или 20: 1. Другими словами, первичный ток в 20 раз больше вторичного тока.

Однако следует отметить, что трансформатор тока с номиналом 100/5 не совпадает с трансформатором с номиналом 20/1 или подразделениями 100/5. Это связано с тем, что отношение 100/5 выражает «номинальный ток на входе / выходе», а не фактическое соотношение первичных и вторичных токов. Также обратите внимание, что число витков и ток в первичной и вторичной обмотках связаны обратно пропорционально.

Но относительно большие изменения в соотношении витков трансформаторов тока могут быть достигнуты путем изменения первичных витков через окно трансформатора ток, где один первичный виток равен одному проходу, а более одного прохода через окно приводит к изменению электрического соотношения.

Так, например, трансформатор тока с отношением, скажем, 300 / 5А можно преобразовать в другой из 150 / 5А или даже 100 / 5А, пропустив основной первичный проводник через его внутреннее окно два или три раза, как показано ниже. Это позволяет более высокому значению трансформатора тока обеспечивать максимальный выходной ток для амперметра, когда используется на меньших первичных линиях тока.

Пример трансформатора тока

Трансформатор тока стержневого типа, который имеет 1 виток на своей первичной обмотке и 160 витков на своей вторичной обмотке, должен использоваться со стандартным диапазоном амперметров с внутренним сопротивлением 0,2 Ом. Амперметр необходим для полного отклонения шкалы, когда первичный ток составляет 800 А. Рассчитайте максимальный вторичный ток и вторичное напряжение на амперметре.

Вторичный ток:

Напряжение через амперметр:

Выше мы видим, что, поскольку вторичная обмотка трансформатора тока подключена к амперметру с очень малым сопротивлением, падение напряжения на вторичной обмотке составляет всего 1,0 В при полном первичном токе.

Однако, если амперметр был удален, вторичная обмотка фактически разомкнута, и, таким образом, трансформатор действует как повышающий трансформатор. Это частично связано с очень большим увеличением намагничивающего потока во вторичном сердечнике, поскольку реактивное сопротивление вторичной утечки влияет на вторичное индуцированное напряжение, потому что во вторичной обмотке нет противоположного тока, чтобы предотвратить это.

Результатом является очень высокое напряжение, наведенное во вторичной обмотке, равное отношению: Vp (Ns / Np) , развиваемое через вторичную обмотку. Например, предположим, что наш трансформатор тока сверху используется на трехфазной линии электропередачи напряжением 480 вольт. Следовательно:

Это высокое напряжение связано с тем, что отношение вольт на витки в первичной и вторичной обмотках практически постоянно, а поскольку Vs = Ns * Vp , значения Ns и Vp являются высокими значениями, поэтому Vs чрезвычайно велико.

По этой причине трансформатор тока никогда не следует оставлять разомкнутым или работать без нагрузки, когда через него протекает основной первичный ток, точно так же, как трансформатор напряжения никогда не должен работать при коротком замыкании. Если амперметр (или нагрузка) должен быть удален, сначала следует установить короткое замыкание на вторичных клеммах, чтобы исключить риск удара током.

Это высокое напряжение объясняется тем, что когда вторичная обмотка разомкнута, железный сердечник трансформатора работает с высокой степенью насыщения и ничто не может его остановить, он создает аномально большое вторичное напряжение, и в нашем простом примере выше это было рассчитано на 76,8 кВ! Это высокое вторичное напряжение может повредить изоляцию или привести к поражению электрическим током при случайном прикосновении к клеммам трансформатора тока.

Ручные трансформаторы тока

В настоящее время доступно много специализированных типов трансформаторов тока. Популярный и портативный тип, который может быть использован для измерения нагрузки цепи, называется «клещами», как показано на рисунке.

Измерители зажимов открывают и закрывают вокруг проводника с током и измеряют его ток, определяя магнитное поле вокруг него, обеспечивая быстрое считывание результатов измерений, как правило, на цифровом дисплее без отключения или размыкания цепи.

Наряду с ручным зажимом типа трансформатора тока имеются трансформаторы тока с разделенным сердечником, у которых один конец съемный, поэтому нет необходимости отсоединять проводник нагрузки или шину для его установки. Они доступны для измерения токов от 100 до 5000 ампер, с квадратными размерами окна от 1 ″ до более 12 ″ (от 25 до 300 мм).

Подводя итог, можно сказать, что трансформатор тока (ТТ) представляет собой тип измерительного трансформатора, используемого для преобразования первичного тока во вторичный ток через магнитную среду. Его вторичная обмотка обеспечивает значительно уменьшенный ток, который можно использовать для обнаружения условий сверхтока, пониженного тока, пикового или среднего тока.

Первичная катушка трансформатора тока всегда соединена последовательно с главным проводником, в результате чего ее также называют последовательным трансформатором. Номинальный вторичный ток рассчитан на 1А или 5А для простоты измерения. Конструкция может представлять собой один первичный виток, как в типах тороидальных, кольцевых или стержневых, или несколько витков первичной обмотки, как правило, для малых коэффициентов тока.

Трансформаторы тока предназначены для использования в качестве устройств пропорционального тока. Поэтому вторичная обмотка трансформаторов тока никогда не должна эксплуатироваться в разомкнутой цепи, точно так же, как трансформатор напряжения никогда не должен работать при коротком замыкании.

Очень высокое напряжение возникает в результате разомкнутой цепи вторичной цепи трансформатора тока под напряжением, поэтому их клеммы должны быть замкнуты накоротко, если амперметр должен быть удален или когда ТТ не используется перед включением питания системы.

В следующей статье о трансформаторах мы рассмотрим, что происходит, когда мы соединяем вместе три отдельных трансформатора в конфигурации «звезда» или «треугольник», чтобы получить более мощный силовой трансформатор, называемый , который используется для питания трехфазных источников питания.

В процессе использования энергетических систем нередко бывают случаи, когда нужно превратить какие-то электрические величины в их аналоги, при этом показатели нужно соответственно изменить в нужном соотношении, для чего обычно применяется трансформатор тока . С помощью трансформатора тока можно смоделировать некоторые процессы в электрических установках, а также сделать измерительный процесс более безопасным.

Функционирование трансформатора тока базируется на законе электромагнитной индукции . Данный закон работает в электрических и магнитных полях, которые изменяются по форме гармоник переменных синусоидальных величин.

Трансформатор тока превращает начальное значение вектора тока, который течет в силовой цепи, в конечное, меньшее по величине, при этом выдерживается нужное соотношение значения по модулю и сохраняется точная величина угла.

Как устроен трансформатор тока?

На следующем рисунке схематично обозначены процессы, протекающие в трансформаторе тока при превращении электроэнергии.

По первичной силовой обмотке с количеством витков ω1 течет ток I1, при этом он преодолевает ее полное сопротивление Z1. Вокруг катушки возникает магнитный поток Ф1, он фиксируется с помощью магнитопровода, находящегося перпендикулярно по отношению к вектору I1. Подобный способ расположения позволяет превращать электрическую энергию в магнитную с наименьшими потерями.

При пересечении перпендикулярных витков обмотки ω2 поток Ф1 создает в них электродвижущую силу Е2, под ее действием во вторичной обмотке появляется ток I2, который преодолевает полное сопротивление катушки Z2 и подсоединенной на выходе нагрузки Zн. В процессе напряжение U2 на зажимах вторичной цепи падает.

Коэффициент трансформации К1, можно посчитать, разделив вектор I1 на вектор I2. Это один из основных параметров трансформаторов тока , он определяется прежде, чем начинают проектировать устройство, а в действующих трансформаторах его измеряют. Однако, как и при работе любых приборов, реальные показания отличаются от теоретических. Для учета таких погрешностей существует специальная метрологическая характеристика, или класс точности трансформатора тока.

В отличие от расчетов, при работе трансформатора тока в жизни величины токов в обмотках не являются константами, так что коэффициент трансформации рассчитывают по номиналам. К примеру, если коэффициент трансформации равен 1000/5, то это значит, что в первичном витке течет ток величиной 1 кА, а во вторичных действует нагрузка 5 А. Исходя из данных величин, можно понять, как долго трансформатор тока прослужит.

Магнитный поток Ф2, возникающий благодаря вторичному току I2, понижает величину потока Ф1 в магнитопроводе. В процессе возникающий поток трансформатора Фт рассчитывается как геометрическая сумма векторов Ф1 и Ф2.

Где и как используют трансформаторы тока?

Самые разные виды трансформаторов тока применяются в электронных устройствах, начиная от небольших и заканчивая приборами размером в несколько метров. Обычно их классифицируют по признакам эксплуатации.

Классификация трансформаторов тока :

По предназначению:

  • для измерений (с их помощью на измерительные устройства подается электрический ток);
  • для защиты (их подключают к цепям защит);
  • для лабораторных применений (такие трансформаторы тока имеют большой класс точности);
  • для повторных преобразований (промежуточные).

В работе объектов используют следующие трансформаторы тока:

  • для внешнего монтажа (на улице);
  • для внутреннего монтажа (для закрытых установок);
  • вмонтированные внутрь корпуса прибора;
  • накладные (их надевают на проходной изолятор);
  • переносные (для проведения измерений в различных местах).

По значению рабочего напряжения оборудования трансформаторы тока делятся на:

  • высоковольтные (обладающие напряжением свыше 1000 В);
  • с номинальным напряжением не более 1 кВ.

Существуют и другие деления трансформаторов тока на виды, в том числе по способу материалов для изоляции , по числу ступеней трансформации и другим характеристикам.

Для чего нужны трансформаторы тока?

Чаще всего трансформаторы тока используют в цепях учета измерения электроэнергии, для замеров и защит линий или силовых автотрансформаторов обычно применяют переносные трансформаторы тока.

На следующем изображении приведено расположение трансформаторов тока для каждой фазы линии и монтаж вторичных цепей в клеммном ящике на ОРУ-110 кВ для силового автотрансформатора.

Таким же целям служат трансформаторы тока на ОРУ-330 кВ, однако они гораздо больших размеров из-за сложностей конструкции, так как они предназначены для более высоковольтного оборудования.

На энергетическом оборудовании нередко используют встроенные конструкции трансформаторов тока , их помещают непосредственно на корпусе силового объекта.

Их конструкция предполагает вторичные обмотки с выводами, которые находятся вокруг высоковольтного ввода в герметичном корпусе. Кабели от зажимов трансформатора тока подведены к закрепленным тут же клеммным ящикам.

В трансформаторах тока , характеризующихся высоким напряжением , обычно как изолятор применяют трансформаторное масло. На следующем изображении показан вариант такой конструкции для трансформаторов тока серии ТФЗМ для работы при напряжении, равном 35 кВ.

При напряжениях, не превышающих 10 кВ, в целях изоляции между обмотками при производстве корпуса прибора, применяют твердые диэлектрические материалы.

Например, трансформатор тока марки ТПЛ-10, используемый в КРУН, ЗРУ и других видах распределительных устройств.

На следующей упрощенной схеме показан пример подключения вторичной токовой цепи одного из кернов защит REL 511 для выключателя линии 110 кВ.

Как понять, что трансформатор тока испорчен, и найти неисправности?

Когда трансформатор тока находится под нагрузкой, у него может быть нарушено электрическое сопротивление изоляции обмоток или их проводимость. Это происходит из-за воздействия теплового перегрева, нанесенных случайным образом механических повреждений или неправильной сборки.

В процессе работы трансформатора тока вероятнее всего возникновение проблем с изоляцией, в результате чего случаются замыкания обмоток между витками и понижение передаваемой мощности. Также из-за этого может произойти утечка через случайно созданные цепи, что, в свою очередь, может закончиться коротким замыканием.

Для того, чтобы обнаружить точки, в которых конструкция была собрана неправильно, трансформатор тока необходимо регулярно проверять с помощью тепловизора. Тогда будет возможно вовремя обнаружить и исправить дефекты в виде, например, нарушенных контактов, и снизить перегрев устройства.

На предмет отсутствия межвитковых замыканий приборы проверяют специалисты лабораторий РЗА с помощью:

  • снятия вольтамперной характеристики;
  • прогрузки трансформатора тока от постороннего источника;
  • замеров основных характеристик прибора в рабочей схеме.

Они же проводят анализ величину коэффициента трансформации.

При всех работах замеряется отношение между векторами первичных и вторичных токов по величине. Их угловые отклонения в данном случае не замеряют, так как высокоточных фазоизмерительных устройств для проверки трансформаторов тока в метрологических лабораториях не существует.

Высоковольтные испытания диэлектрических свойств проводятся специалистами лаборатории службы изоляции.

Трансформаторы тока классифицируются:

  • по числу коэффициентов трансформации: с одним коэффици­ентом трансформации; с несколькими коэффициентами трансфор­мации, получаемыми изменением числа витков первичной или вторичной обмотки, или обеих обмоток, или применением нескольких вторичных обмоток с различным числом витков, соот­ветствующим различному номинальному вторичному току;
  • по числу ступеней трансформации: одноступенчатые; кас­кадные (многоступенчатые), т. е. с несколькими ступенями транс­формации тока;
  • по выполнению первичной обмотки: одновитковые; многовитковые.

Одновитковые трансформатоьры тока имеют 2 разновидности:без собственной первичной обмотки; с собственной первичной обмоткой. Одновитковые трансформаторы тока, не имеющие собственной первичной обмотки, выполняются встроенными, шинными или разъемными.

Встроенный трансформатор тока представляет собой магнитопровод с намотанной на него вторичной обмоткой. Он не имеет собственной первичной обмотки. Ее роль выполняет токоведущий стержень проходного изолятора. Этот трансформатор тока не имеет изоляционных элементов между первичной и вто­ричной обмотками. Их роль выполняет изоляция проходного изо­лятора.

Трансформатор тока ТПЛ-10: 1 - сердечник Р; 2 - сердечник класса 0,5; 3 - литой корпус; 4 - выводы первичной обмотки; 5 - выводы вторичных обмоток; 6 - крепежный уголок; 7 - заземляющий болт; 8 - паспортный щиток; 9 - предупредительная табличка.

Собственная первичная обмотка ТТ - токоведущий стержень проходного изолятора (шина). В шинном трансформаторе тока роль первичной обмотки выполняют одна или несколько шин распределительного устрой­ства, пропускаемые при монтаже сквозь полость проходного изоля­тора. Последний изолирует такую первичную обмотку от вто­ричной.

Разъемный трансформатор тока 2 тоже не имеет собственной первичной обмотки. Его магнитопровод состоит из 2-х частей, стягиваемых болтами. Он может размыкаться и смыкаться вокруг проводника с током, являющимся первичной обмоткой этого ТТ. Изоляция между первичной и вторичной обмотками наложена на магнитопровод со вторичной обмоткой.

Одновитковые ТТ, имеющие собственную первичную обмотку, выполняются со стержневой первичной обмоткой или с U-образной.

Трансформатор тока 3 имеет первичную обмотку в виде стержня круглого или прямоугольного сечения, закрепленного в проход­ном изоляторе.

Трансформатор тока 4 имеет U-образную первичную обмотку, выполненную таким образом, что на нее наложена почти вся внутренняя изоляция ТТ.

Многовитковые трансформаторы тока изготовляются с катушечной первичной обмоткой, надеваемой на магнитопровод; с петлевой первичной обмоткой 5, состоящей из нескольких витков; со звеньевой первичной обмот­кой 6, выполненной таким образом, что внутренняя изоляция трансформатора тока конструктивно распределена между первич­ной и вторичной обмотками, а взаимное расположение обмоток напоминает звенья цепи; с рымовидной первичной обмоткой, выполненной таким образом, что внутренняя изоляция трансфор­матора тока нанесена в основном только на первичную обмотку, имеющую форму рыма.

Основными параметрами и характеристиками трансформатора тока в соответствии с ГОСТ 7746-78 «Трансформаторы тока. Общие технические требования» являются:

  1. Номинальное напряжение - действующее значение ли­нейного напряжения, при котором предназначен работать трансформатор тока, указываемое в паспортной таблице трансформатора тока. Для отечественных трансформаторов тока принята следующая шкала номинальных на­пряжений, кВ: 0,66; 6; 10; 15; 20; 24; 27; 35; 110; 150; 220; 330; 500; 750; 1150.
  2. Номинальный первичный ток I1н, указываемый в паспортной таблице трансформатора тока, - ток, проходящий по первичной обмотке, при котором предусмотрена продолжительная работа трансформатора тока. Для оте­чественных трансформаторов тока принята следующая шкала номинальных первичных токов, А: 1; 5; 10; 15; 20; 30; 40; 50; 75; 80; 100; 150; 200; 300; 400; 500; 600; 750; 800; 1000; 1200; 1500; 2000; 3000; 4000; 5000; 6000- 8000; 10 000; 12 000; 14 000; 16 000; 18 000; 20 000; 25 000; 28 000 ; 32 000, 35 000; 40 000. В трансформаторах тока, предназначенных для комплектова­ния турбо- и гидрогенераторов, значения номинального тока свыше 10 000 А могут отличаться от приведенных в данной шкале зна­чений. Трансформаторы тока, рассчитанные на номинальный первич­ный ток 15; 30; 75; 150; 300; 600; 750; 1200; 1500; 3000 и 6000 А, должны допускать неограниченно длительное время наибольший рабочий первичный ток, равный соответственно 16; 32; 80; 160; 320, 630; 800; 1250; 1600; 3200 и 6300 А. В остальных случаях наибольший первичный ток равен номинальному первичному току.
  3. Номинальный вторичный ток I2н, указываемый в пас­портной таблице трансформаторов тока, - ток, проходящий по вторичной обмотке. Номинальный вторичный ток принимается равным 1 или 5 А, причем ток 1 А допускается только для трансформаторов тока с номинальным пер­вичным током до 4000 А. По согласованию с заказчиком допу­скается изготовление трансформатора тока с номинальным вторичным током 2 или 2,5 А.
  4. Вторичная нагрузка трансформатора тока z2н соответствует полному сопро­тивлению его внешней вторичной цепи, выраженному в омах, с указанием коэффициента мощности. Вторичная нагрузка может также характеризоваться полной мощностью в вольт-амперах, потребляемой ею при данном коэффициенте мощности и номиналь­ном вторичном токе. Вторичная нагрузка с коэффициентом мощности cos ср2 = 0,8, при которой гарантируется установленный класс точности трансформатора тока или предельная кратность первичного тока относительно его но­минального значения, называется номинальной вто­ричной нагрузкой трансформатора тока z2н.ном Для отечественных трансформаторов тока установлены следую­щие значения номинальной вторичной нагрузки S2н.ном, выра­женной в вольт-амперах, при коэффициенте мощности cos р2 = 0,8: 1; 2; 2,5; 3; 5; 7,5; 10; 15; 20; 25; 30; 40; 50; 60; 75; 90; 100; 120. Соответствующие значения номинальной вторичной нагрузки (в омах) определяются выражением Z2н. ном = S2н. ном/I2н^2.
  5. Коэффициент трансформации трансформатора тока равен отношению первич­ного тока ко вторичному. В расчетах трансформаторов тока применяются 2 величины: действительный коэффициент трансформации n и номинальный коэффициент трансформации nн. Под действительным коэффици­ентом трансформации n понимается отношение действительного первичного тока к действительному вторичному. Под номиналь­ным коэффициентом трансформации nн понимается отношение номинального первичного тока к номинальному вторичному.
  6. Стойкость трансформатора тока к механическим и тепловым воздействиям характеризуется током электродинамической стойкости и током термической стойкости.

Ток электродинамической стойкости Iд равен наибольшей амп­литуде тока короткого замыкания за все время его протекания, которую трансформатор выдерживает без повреждений, препятствующих его дальнейшей исправной работе. Ток Iд характеризует способность трансформатора тока противостоять механическим (электродинамическим) воздей­ствиям тока короткого замыкания.

Электродинамическая стой­кость может характеризоваться также кратностью Kд, представля­ющей собой отношение тока электродинамической стойкости к амплитуде номинального первичного тока. Требования электро­динамической стойкости не распространяются на шинные, встроенные и разъемные трансформаторы тока.

Ток термической стойкости Itт равен наибольшему действую­щему значению тока короткого замыкания за промежуток Tт, которое трансформатор тока выдерживает в течение всего промежутка времени без нагрева токоведущих частей до температур, превышающих допу­стимые при токах короткого замыкания и без повре­ждений, препятствующих его дальнейшей работе.

Элементами, участвующими в преобразо­вании тока, являются пер­вичная 1 и вторичная 2 об­мотки, намотанные на один и тот же магнитопровод 3. Первичная обмотка включается последовательно (в рас­сечку токопровода высокого напряжения 4), т. е. обтекается током линии I1. Ко вторичной обмотке подключаются (амперметр, токовая обмотка счетчика) или реле. При ра­боте трансформатора тока вторичная обмотка всегда замкнута на нагрузку.

Первичную обмотку совместно с цепью высокого напряжения называют первичной цепью, а внешнюю цепь, получаю­щую измерительную информацию от вторичной обмотки трансфор­матора тока (т. е. нагрузку и соединительные провода), называют вторичной цепью. Цепь, образуемую вторичной об­моткой и присоединенной к ней вторичной цепью, называют ветвью вторичного тока.

Из принципиальной схемы трансформатора видно, что между первичной и вторичной обмотками не имеется электрической связи. Они изолированы друг от друга на полное рабочее напря­жение. Это и позволяет осуществить непосредственное присоеди­нение измерительных приборов или реле ко вторичной обмотке и тем самым исключить воздействие высокого напряжения, при­ложенного к первичной обмотке, на обслуживающий персонал. Так как обе обмотки наложены на один и тот же магнитопровод, то они являются магнитно-связанными.

Рисунок 1. Схема трансформатора тока.

На рис. 1 изображены только те элементы трансформатора тока, которые участвуют в преобразовании тока. Конечно, трансформатор тока имеет много других элементов, обеспечивающих требуемый уро­вень изоляции, защиту от атмосферных воздействий, надлежащие монтажные и эксплуатационные характеристики. Однако они не принимают участия в преобразовании тока и будут рассмат­риваться ниже в соответствующих главах.

Перейдем к рассмотрению принципов действия трансформатора тока. По первичной обмотке 1 трансформатора про­ходит ток I1 называемый первичным. Он зависит только от параметров первичной цепи. Поэтому при анализе явлений, происходящих в трансформаторе тока, первичный ток можно считать заданной величиной. При прохождении первичного тока по первичной обмотке в магнитопроводе создается перемен­ный магнитный поток Ф1, изменяющийся с той же частотой, что и ток I1. Магнитный поток Ф1 охватывает витки как первичной, так и вторичной обмоток.

Пересекая витки вторичной обмотки, магнитный поток Ф1 при своем изменении индуцирует в ней элект­родвижущую силу. Если вторичная обмотка замкнута на некото­рую нагрузку, т. е. к ней присоединена вторичная цепь, то в такой системе «вторичная обмотка - вторичная цепь» под действием индуцируемой э. д. с. будет проходить ток. Этот ток согласно закону Ленца будет иметь направление, противоположное на­правлению первичного тока I1.

Ток, проходящий по вторичной обмотке, создает в магнитопроводе переменный магнитный поток Ф2, который направлен встречно магнитному потоку Ф1. Вследствие этого магнитный поток в магнитопроводе, вызванный первичным током, будет уменьшаться. В результате сложения магнитных потоков Ф1 и Ф2 в магнитопроводе устанавливается результирующий магнитный поток Ф0 = Ф1 - Ф2, составляющий несколько процентов магнитного по­тока Ф1. Поток Ф0 и является тем звеном, посред­ством которого осуществляется передача энергии от первичной обмотки ко вторичной в процессе преобразования тока.

Результирующий магнитный поток Ф0, пересекая витки обеих обмоток, индуцирует при своем изменении в первичной обмотке противо-э. д. с. Ех, а во вторичной обмотке - э. д. с. Ей. Так как витки первичной и вторичной обмоток имеют примерно одинаковое сцепление с магнитным потоком в магнитопроводе (если прене­бречь рассеянием), то в каждом витке обеих обмоток индуцируется одна и та же э. д. с. Под воздействием э. д. с. Е2 во вторичной обмотке протекает ток I2, называемый вторичным током.

Если обозначить число витков первичной обмотки через W1, а вторичной обмотки - через W2, то при протекании по ним соот­ветственно токов I1 и I2 в первичной обмотке создается магнито­движущая сила F1 = I1*W1, называемая первичной маг­нитодвижущей силой (м. д. с), а во вторичной обмотке - магнитодвижущая сила F2 = I2*W2, называемая вто­ричной м. д. с. Магнитодвижущая сила измеряется в ам­перах.

При отсутствии потерь энергии в процессе преобразования тока магнитодвижущие силы F1 и F2 должны быть численно равны, но направлены в противоположные стороны. Трансформатор тока, у которого процесс преобразования тока не сопровождается потерями энергии, называется и де а л ь н ы м. Для идеального трансформатора тока справедливо следую­щее векторное равенство:

F1=-F2 или I1W1=I2W2

Из этого равенства следует,что I1/I2=W2/W1=n т. е. токи в обмотках идеального трансформатора тока обратно пропорциональны числам витков.

Отношение первичного тока ко вторичному I1/I2 или числа витков вторичной обмотки к числу витков первичной обмотки W2/W1 называется коэффициентом трансформа­ции п идеального трансформатора тока. Учитывая это равенство, можно написать I1=I2*W2/W1=I2*n т. е. первичный ток I1 равен вторичному току I2, умноженному на коэффициент трансформации трансформатора тока n.

В реальных трансформаторах тока преобразование тока сопровождается потерями энергии, расходуемой на создание магнитного потока в магнитопроводе, на нагрев и перемагничивание магнитопровода, а также на нагрев проводов вторичной обмотки и вторичной цепи. Эти потери энергии нарушают установленные выше равенства для абсолютных значений м. д. с. F1 и F2.

В реальном трансформа­торе первичная м. д. с. должна обеспечить создание необходимой вторичной м. д. с, а также дополнительной м. д. с, расходуе­мой на намагничивание магнитопровода и покрытие других по­терь энергии. Следовательно, для реального трансформатора урав­нение будет иметь следующий вид:
где - полная м. д. с. намагничивания, затрачиваемая на про­ведение магнитного потока Фо по магнитопроводу, на нагрев и перемагничивание его.

В соответствии с этим равенство примет вид

i1*W1=i2*W2+i0*W1

где i0 - ток намагничивания, создающий в магнитопроводе магнитный поток Ф0 и являющийся частью первичного тока 11ш. Разделив все члены уравнения на W1, получим i1=i2*W2/W1+i0. При первичном токе, не превышающем номинальный ток трансформатора, ток намагничивания обычно составляет не более 1-3% первич­ного тока, и им можно пренебречь. В этом случае I1=I2*n. Таким образом, вторичный ток трансформатора пропорциона­лен первичному току. Для понижения измеряемого тока необходимо, чтобы число витков вторичной обмотки было больше числа витков первичной обмотки.

Реальный транс­форматор тока несколько искажает результаты измерений, т. е. имеет погрешности.Иногда пользуются так называемым приведением тока к пер­вичной или вторичной обмотке I0"=I0/n.

Часть приведенного первичного тока идет на намагничивание магнитопровода, а остальная часть трансформируется во вторичную цепь, т. е. первичный ток как бы разветвляется по 2-м параллельным цепям: по цепи нагрузки и цепи намагничивания. Сопротивление первичной обмотки трансформатора тока на схеме замещения не показано, так как оно не оказывает влияния на работу трансформатора.